APPLIED ANALYSIS PRELIMINARY EXAMINATION
Jan. 8, 1994

Instructions: You have three hours to complete this exam. Please start each problem on a new page.

1. Assume \(f : \mathbb{R}^n \to \mathbb{R}^m \) is \(C^1 \) and \(L \) is an \(m \times n \) matrix.
 Show: \(\lim_{\|h\| \to 0} \frac{\|f(x+h) - f(x) - Lh\|}{\|h\|} = 0 \) iff \(L = \left(\frac{\partial f_i}{\partial x_j}(x) \right) \).

Do four of the following five problems:

2. Let \(f(x), \{f_n(x)\}_{n=1,2,\ldots} \) be lebesgue measurable functions on \([0, \infty]\), \(f_n(x) \geq -\frac{\cos x^2}{1+x^2} \) and \(f_n(x) \to f(x) \) almost everywhere on \([0, \infty]\). Show that: \(\liminf_{n \to \infty} \int_0^\infty f_n(x) \, dx \geq \int_0^\infty f(x) \, dx. \)
 Give an example to show the inequality may be strict.

3. Prove the existence and uniqueness of a continuous solution \(u \) to the initial value problem \(u''(t) + \frac{2}{t} u'(t) = -t^2 e^{u(t)}, u(0) = 0 \) for \(0 < t < \delta \), for some small number \(\delta \).
 Show that \(u'(0) \) exists and compute \(u'(0) \).

4. \(a = (a_1, a_2, \ldots, a_n, \ldots) \) is a sequence of real numbers. Suppose that for any given sequence of real numbers \(b = (b_1, b_2, \ldots, b_n, \ldots) \) with \(\sum_{n=1}^\infty b_n^2 < \infty \), we know that \(\sum_{n=1}^\infty a_n b_n \) converges. Show that \(\sum_{n=1}^\infty a_n b_n^2 < +\infty \).

5. \(K(x, y) = \sin x \sin y + \cos 2x \cos 2y \). Let \(X = L^2[0, 2\pi] \). \(T : X \to X \) is defined by \((Tf)(x) = \int_0^{2\pi} K(x, y) f(y) \, dy \).
 a) Is \(T \) a compact operator? (Prove your conclusion).
 b) Is \(T \) a self-adjoint operator? (Prove your conclusion).

6. For \(T, X \) as defined in previous problem,
 a) Find all eigenfunctions corresponding to the eigenvalue \(\pi \). Find the spectrum of \(T \).
 b) For what \(g \in X \) is the equation \(T f - f = g \) solvable?
 c) For what \(g \in X \), is the equation \(T f - \pi f = g \) solvable?