Instructions: You have three hours to complete this exam. Work all five problems. Please start each problem on a new page. You MUST prove your conclusions or show a counter-example for all problems. Write your name on your exam. Each problem is worth 20 points.

1. (a) Consider the vector field \(\mathbf{A} = (x + 1, y)e^{-x^2 - 2x - y^2} \). Prove that \(\nabla \times \mathbf{A} = 0 \). (4p)

 (b) Let \(G \) denote the set consisting of all \(C^1 \) curves in \(\mathbb{R}^2 \) of finite length, and define for \(\Gamma \in G \) the function \(f \) by letting
 \[
 f(\Gamma) = \int_{\Gamma} \mathbf{A} \cdot d\mathbf{x}.
 \]
 Determine \(\max_{\Gamma \in G} f(\Gamma) \), if it exists (if not, prove that it does not). (8p)

 (c) Determine \(\sup_{\Gamma \in G} f(\Gamma) \), if it exists (if not, prove that it does not). (8p)

2. Evaluate the limit
 \[
 \lim_{n \to \infty} n \int_{0}^{\infty} \frac{\sin(x/n)}{x(1 + x^2)} \, dx.
 \]
 Make sure to justify your calculation.

3. (a) Consider the Banach space \(X = l^3 \), and its subset \(S = \{ x \in X : ||x|| = 1 \} \). What is the weak closure of \(S \)? Prove your conclusion.

 (b) Fix a non-zero vector \(u \in X \) and define the operator \(T_n \) on \(X \) by setting \(T_n x = u x_n \), for \(x = (x_1, x_2, \ldots) \in X \). Prove that \(T_n \to 0 \) strongly in \(X \).

 (c) Define \(T_n^* \) (both its action and its range) and specify in what sense (if any) the sequence \(\{T_n^*\}_{n=1}^{\infty} \) converges to zero.

4. Consider the integration operator \(T \) that is defined by
 \[
 [T u](x) = \int_{0}^{x} u(s) \, ds.
 \]
 Prove that \(T \) is a compact operator on \(C([0, 1]) \) and determine its spectrum.

5. Use the contraction mapping theorem to prove the existence of a \(C^2 \) function \(\phi(x, y) \) solving the equation
 \[
 \cos \phi(x, y) + (x^2 + y^2 + 4)\phi(x, y) + \phi^2(x, y) + 3x^3 - 1 = 0 \]
 on the closed ball of radius \(\delta \) and centered at \((0, 0)\) for some \(\delta > 0 \) with \(\phi(0, 0) = 0 \).