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Abstract. We introduce a new method for functional representation of os-
cillatory integrals within any user-supplied accuracy. Our approach is based

on robust methods for nonlinear approximation of functions via exponentials.

The complexity of evaluation of the resulting representations of the oscillatory
integrals does not depend or depends only mildly on the size of the parameter

responsible for the oscillatory behavior.

1. Introduction. Methods for asymptotic evaluation of oscillatory integrals have
a long history (see e.g. [34, 10] and references therein). These methods have
been widely used to construct asymptotic solutions of partial differential equations
(PDEs). Two early examples are [21] as well as [32] where Peter Lax applied an
asymptotic approach for solving oscillatory initial value problems. Further devel-
opment of asymptotic methods led to the theory of pseudo-differential and Fourier
integral operators; overall, this work occupied attention of mathematicians for many
decades.

While ubiquitous in a variety of applications, computing oscillatory integrals via
standard quadrature rules is highly inefficient since the cost of evaluation grows (at
best) proportionally to the number of oscillations of the integrand. For example,
consider the Fourier-type integral

I (ω) =

∫ 1

−1

f (x) eiωg(x)dx, ω > 0, (1)

where we assume that the real-valued functions f and g, usually referred to as the
amplitude and the phase, are smooth and only mildly oscillatory. The difficulty
arises for ω � 1 since the integrand becomes highly oscillatory. In order to avoid
quadratures, the classical approach to approximate values of I (ω) is to construct
its asymptotic expansion with respect to inverse powers of ω. Such asymptotics
identifies two main contributions, one from the end points and one from the sta-
tionary points (i.e, where g′(x) = 0). If g′(x) 6= 0 in [−1, 1], then integration by
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parts in (1) yields the desired asymptotics. If at an isolated point x∗ ∈ [−1, 1] one
or more derivatives of g vanish, then the asymptotics is obtained using the Taylor
expansion of g at x∗. The specific powers in the asymptotic expansion depend e.g.,
on the type of stationary points of g. Asymptotics expansions of this type are also
available in higher dimensions, see e.g., [34, 10].

More recently, Iserles and Norsett [26, 27] developed a Filon-type method for (1)
by assuming that the amplitude function f is well approximated by polynomials.
The need to solve ordinary differential equations with highly oscillatory forcing
terms motivated a combination of asymptotic and numerical approaches taken in
[29, 15, 28, 16, 17, 25]. A numerical approach to the evaluation of oscillatory
integrals impacts many problems in other applications as may be seen in [19].

In this paper we introduce a new semi-analytic method for the numerical eval-
uation of oscillatory integrals. Our approach is based on methods for nonlinear
approximation of functions via exponentials that yield, for any user-defined accu-
racy, functional representations of oscillatory integrals. One of the tools we use is
the approximation of functions via bandlimited (purely oscillatory) exponentials, an
alternative to the traditional approximation by polynomials. Since the integrand of
an oscillatory integral has two components, an amplitude and an oscillatory expo-
nential with a large parameter, it is natural and, as we demonstrate, advantageous
to approximate the amplitude via exponentials. Indeed, the resulting integrals can
be evaluated explicitly yielding a functional representation within any user-selected
accuracy. Our construction relies on Gaussian-type quadratures for exponentials
described in [4, 38]. Another tool is the approximation of functions via decaying
oscillatory exponentials [5, 6, 7]. We note that the latter methodology also yields
near optimal approximations via rational functions.

A combination of these tools allows us to accurately evaluate oscillatory integrals
at a cost that does not depend (or depends very mildly) on the size of the param-
eter ω. Our approach is semi-analytic since it yields a functional approximation,
i.e., the result is a (parametrized) function that can be used in further computa-
tions. Previously we applied these nonlinear techniques to approximating kernels
of operators (see e.g. [7] and references therein) and solving partial differential
and integral equations [24, 3]. We also developed an approach based on nonlinear
approximations for applying the oscillatory Rayleigh-Sommerfeld kernel in optics
[33].

To demonstrate our approach, we illustrate it on three representative problems.
First, in Section 3, we address the accurate computation of integrals of type (1)
with complexity either O (logω) or O (1). Then, in Section 4, we turn to the nu-
merical evaluation of non-traditional oscillatory integrals introduced in [15] (ExpSin
integrals),

Ie (ω) =

∫ 1

−1

f (x) eτ sinω(αx+β)dx, ω ≥ 0, (2)

where α > 0, β ∈ R, τ ∈ C, τ 6= 0. For any user-supplied accuracy, our approach
yields a (semi-analytic) representation of this integral such that the number of
operations for its evaluation does not depend on ω. It turns out that even the more
general integrals in [25] submit to our approach. In Section 5, we present examples
of accurate and efficient representation of several (familiar) functions defined in
terms of oscillatory integrals and conclude the paper in Section 6.
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2. Preliminaries. Our approach relies on algorithms for representing functions
as linear combinations of exponentials with purely imaginary exponents, or decay-
ing oscillatory exponentials, rational functions or Gaussians with complex-valued
exponents [4, 5, 6, 23, 38, 24, 3]. One of the critical aspects of these algorithms
is that they yield representations with near optimal (smallest) number of terms
needed to represent a function within a prescribed accuracy. As it becomes clear
later in the paper, the very fact that we use exponentials rather than polynomials
to approximate amplitudes in oscillatory integrals is an essential advantage of our
approach.

2.1. Approximation of functions via exponentials with purely imaginary
exponents. While periodic band-limited functions may be expanded into Fourier
series, neither the Fourier series nor the Fourier integral may be used efficiently for
non-periodic functions on intervals. This motivates considering the linear space of
functions

Ec =

{
u∈L∞([−1, 1]) | u(x) =

∑
k∈Z

ake
icbkx :

∑
k∈Z
|ak| <∞, bk ∈ [−1, 1]

}
,

with a fixed parameter c, the so-called bandlimit. It is shown in [8] that Ec is dense
in the space of bandlimited functions,

Bc = {f ∈ L2(R) | f̂(ω) = 0 for |ω| ≥ c}
restricted to the interval [−1, 1]. In our approach, given a finite accuracy ε, we rep-

resent functions in Ec using a fixed set of exponentials
{
eicθkx

}M
k=1

, where M =

M (c, ε). It turns out that by finding quadrature nodes {θk}Mk=1 and weights
{wk}Mk=1 for exponentials with bandlimit 2c and accuracy ε2, we in fact obtain
an approximate basis for Ec with accuracy ε (see [4]). We note that any function
on [−1, 1] that is not bandlimited but can be approximated by a bandlimited func-
tion with accuracy ε, can be also represented via the approximate basis for some
bandlimit c.

The construction of required quadrature nodes and weights (the so-called gener-
alized Gaussian quadratures for exponentials) can be found in [4] (see also [44] and
[38] for different constructions) and may be summarized as

Lemma 2.1. For c > 0 and any ε > 0, there exist nodes −1 < t1 < t2 < · · · <
tL < 1 and corresponding weights wl > 0, such that for any x ∈ [−1, 1],∣∣∣∣∣

∫ 1

−1

eictx dt−
L∑
l=1

wle
ictlx

∣∣∣∣∣ ≤ ε, (3)

where the number of nodes, L = L (c, ε) = c/π +O (log c) · O
(
log ε−1

)
, is (nearly)

optimal. The nodes and weights maintain the natural symmetry, tl = −tL−l+1 and
wl = wL−l+1.

Remark 1. The construction in [4, 38] yields quadratures for band-limited expo-
nentials integrated with a weight∣∣∣∣∣

∫ 1

−1

w (t) eictxdt−
L∑
l=1

wle
ictlx

∣∣∣∣∣ ≤ ε, (4)

where the weight function w is real-valued (in fact, it does not have to be sign-
definite, see [38]). If the weight function w is 1 as in Lemma 2.1, then the approach
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in [4] identifies the nodes of the generalized Gaussian quadratures in (3) as zeros
of the Discrete Prolate Spheroidal Wave Functions (DPSWFs) [40], corresponding
to small eigenvalues. The size of the eigenvalue determines the accuracy of the
quadrature, ε. In practice, we have tabulated quadratures described in Lemma 2.1
for fixed accuracy, ε ≈ 10−15 as well as for ε ≈ 10−7, and organized them by the
number of nodes L rather than via the corresponding bandlimit c.

In order to construct an approximate basis for Ec, we use Lemma 2.1 to obtain
a quadrature for exponentials of bandlimit 2c > 0 and accuracy ε2 > 0, yielding M

nodes {θm}Mm=1 and weights {wm}Mm=1, so that∣∣∣∣∣
∫ 1

−1

e2ictxdt−
M∑
m=1

wme
2icθmx

∣∣∣∣∣ ≤ ε2, |x| ≤ 1. (5)

In [4] these nodes and weights are computed by solving the approximation problem

∣∣∣∣∣ sin c (x− t)
c (x− t)

− 1

2

M∑
m=1

wme
icθm(x−t)

∣∣∣∣∣ ≤ ε2, |x| , |t| ≤ 1. (6)

Lemma 2.2. For θ ∈ [−1, 1] consider the function

u (x) =

M∑
m=1

Rm (θ) eicθmx (7)

where Rm (θ) =
∑M
l=1 rlme

icθlθ,
∑M
m=1 rlme

icθmθl′ = δll′ are interpolating functions

on the nodes {θm}Mm=1. Then we have∥∥eicθx − u (x)
∥∥
L2[−1,1]

≤

(
1 +

M∑
m=1

|Rm (θ)|

)
ε. (8)

The proof of this Lemma as well as a corrected version of the L∞ estimate found
in [4] are presented in the appendix. However, we note that the direct numerical
evaluation of the interpolation error indicates that these estimates are somewhat
pessimistic.

Remark 2. It may appear that working within standard double precision arith-
metic (≈ 16 digits), the accuracy of approximation in (8) is limited to ε ≈ 10−8 due
to the accuracy requirement in (6). However, by first computing nodes and weights
in extended precision ≈ 10−32, these nodes and weights can then be used within
double precision arithmetic to achieve ε ≈ 10−16 in (8) .

2.2. Prolate spheroidal wave functions. We briefly summarize some of the
relevant results in [42, 30, 31, 39, 41] (for details see [44, 37]). Let us define operators
Fc : L2 [−1, 1]→ L2 [−1, 1] and Qc = c

2πF
∗
c Fc,

Fc(ψ)(ω) =

∫ 1

−1

eicxωψ(x)dx, (9)

Qc(ψ)(y) =
1

π

∫ 1

−1

sin(c(y − x))

y − x
ψ(x) dx. (10)

where c > 0 is the bandlimit. The eigenfunctions ψ0, ψ1, ψ2, · · · of Qc coincide with
those of Fc, and the eigenvalues µj of Qc are related to the eigenvalues λj of Fc as

µj =
c

2π
|λj |2, j = 0, 1, 2, . . . . (11)
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While all µj < 1, j = 0, 1, . . . , for large c, the first approximately 2c/π eigenvalues
µj are close to 1. They are followed by a transition region consisting of O(log c)
eigenvalues which decay exponentially fast; the rest of the eigenvalues µj are very
close to zero. The functions ψj are also eigenfunctions of a differential operator
[42]. In some respects, PSWFs are strikingly similar to orthogonal polynomials,
e.g., they are orthonormal and constitute a Chebychev system.

2.3. Numerical construction of interpolating bases for band-limited func-
tions. We briefly review the construction of interpolating functions Rm in [4].
Given nodes and weights in (6), we use (6) to replace the kernel in (10) and apply
(9) to obtain the algebraic eigenvalue problem,

M∑
l=1

wle
icθmθlΨj(θl) = ηjΨj(θm). (12)

Solving (12), the approximate PSWFs on [−1, 1] are then defined consistent with
(9) as

Ψj(x) =
1

ηj

M∑
l=1

wle
icxθlΨj(θl), (13)

where ηj are the eigenvalues and Ψj(θl) the eigenvectors in (12). We then define
the interpolating basis for band-limited functions as

Rk(x) =

M∑
l=1

rkle
icθlx, k = 1, . . . ,M, (14)

where
∑M
m=1 rlme

icθmθl′ = δll′ or, alternatively,

rkl =

M∑
j=1

wkΨj(θk)
1

ηj
Ψj(θl)wl. (15)

Combining last identity with (13), we can write the interpolating function in terms
of the approximate PSWFs as,

Rk(x) = wk

M∑
j=1

Ψj(θk)Ψj(x). (16)

The interpolating functions Rk play the same role as the Lagrange interpolating
polynomials defined on the Gauss-Legendre nodes. We note that the interpolating
functions are also used in the construction of a symplectic, bandlimited collocation
implicit Runge-Kutta (BLC-IRK) method for solving ordinary differential equations
[9].

In our approach we want to obtain an approximation on [−1, 1] of a bandlimited

function f via a linear combination of exponentials
{
eicθkx

}M
k=1

,∣∣∣∣∣f(x)−
M∑
m=1

cme
icθmx

∣∣∣∣∣ ≤ ε, x ∈ [−1, 1] . (17)

However, the direct computation of the coefficients cm is an ill-conditioned problem
and we first approximate f using interpolating functions to obtain∣∣∣∣∣f (x)−

M∑
k=1

f (θk)Rk(x)

∣∣∣∣∣ ≤ Cε, x ∈ [−1, 1] .
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Since the coefficients rkl in (14) are precomputed, this sequence of steps avoids the
numerical difficulties of finding the coefficients in (17) directly. In this paper we
always assume that (17) is available for a target accuracy ε.

2.4. Approximation of functions via decaying oscillatory exponentials. In
[5], for a smooth function f(x) and given accuracy ε > 0, we solve the approximation
problem of finding the minimal number of complex coefficients wm and exponents
ηm (of positive real part) such that∣∣∣∣∣f(x)−

M∑
m=1

wme
−ηmx

∣∣∣∣∣ ≤ ε, x ∈ [0, a]. (18)

For functions singular at x = 0, we formulate (18) on the interval [δ, a], where δ > 0
is a small parameter and replace absolute error by relative error. The function f
may be oscillatory, periodic, or non-periodic and we circumvent the constraints of
Fourier analysis by optimizing the value of both the exponents and the coefficients,
which are now complex-valued. These approximations have significantly fewer terms
than Fourier representations or more general constructions like those of the type
(17).

Our results on exponential approximations have a dual (Fourier) version as ap-
proximations by rational functions. To see why, define

g(x) =

M∑
m=1

wme
−ηmx, (19)

for any x ≥ 0 and g(x) = g(−x) for negative values of x. The function g(x) is
infinitely differentiable everywhere except at x = 0 and its Fourier transform is a
real-valued rational function that can be derived analytically,

ĝ(y) =

∫ ∞
−∞

g(x)e2πixydx = −2Re

M∑
m=1

wm
2πiy − ηm

. (20)

For more details on these algorithms we refer the reader to [5, 6, 23, 24, 3].

2.5. Reduction algorithms. Our algorithms seek to find (nonlinear) approxima-
tions to a function on a given interval using an optimal (minimal) number of terms
for a target accuracy. We found that it is often advantageous to first construct a sub-
optimal representation of the desired form and then obtain the optimal one via an
alternative (reduction) algorithm, which minimizes the number of terms. Typically,
an accurate but suboptimal approximation may be relatively easy to obtain e.g.,
by using a quadrature rule in an integral representation of a function. It is also the
case in the context of constructing representations of oscillatory integrals, where
reduction algorithms (see [5, 7, 23]) allow us to first use inefficient but accurate
quadratures to provide an initial approximation to then be followed by a reduction
step. Importantly, the recently developed reduction algorithm [23] is not only fast
but also allows to maintain high relative accuracy. We recently demonstrated the
efficiency and accuracy of this algorithm in [24] by solving Burgers’ equation with
a very small viscosity.
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3. Representation of Fourier-type integrals. As an example of the straight-
forward use of our techniques, we consider a linear phase g(x) = x in (1) and
compute

I(ω) =

∫ 1

−1

f(x)eiωxdx (21)

assuming that f is well approximated by bandlimited exponentials with bandlimit
c, where c� ω. As in (17), for a target accuracy ε, we construct the approximation∣∣∣∣∣f(x)−

M∑
m=1

cme
icθmx

∣∣∣∣∣ ≤ ε, (22)

which immediately gives the explicit approximation∣∣∣∣∣I(ω)−
M∑
m=1

cme
i(cθm+ω)sinc (cθm + ω)

∣∣∣∣∣ ≤ ε. (23)

Here the number of terms, M , is proportional to the bandlimit c and, therefore, the
integral in (21) can be efficiently evaluated for any parameter ω at a cost indepen-
dent of its size.

3.1. A representative example. This example illustrates our approach not only
for a linear phase function g but also in the case of a nonlinear phase as discussed
below. We select

f (x) =
1(

x+ 2n+1
2n−1

)n−1
n

sin

b( 2n−1
2 x+ 2n+1

2

) 1
n

2l+1

 , n = 4, l = 1, (24)

where b = 120.9513171632071. The choice of parameters n and l is explained in the
remark below. This function is displayed in Figure 1 and will be reinterpreted via
a change of variables in the next section. We represent f via (22) with accuracy
1.5 · 10−7, which is consistent with the use of quadratures providing integration
accuracy ε ≈ 10−15 (see Section 2.3). We then represent the integral I (ω) via (23)
and display, in Figure 2, the resulting approximation in the intervals [0, 100] and
[10000, 10100].

Remark 3. We construct a bandlimited approximation of the function f on [−1, 1]
adequate for the choice n = 4 (n later becomes the order of the zero of the phase
function). If we were to choose a larger n in (24), then the denominator would
change rapidly near x = −1. In this case we would simply split the interval of
integration into appropriate subintervals (controlled by the parameter l in (24)) to
maintain a reasonable bandlimit and, hence, a reasonable number of terms in the
approximation. This is a general strategy in situations where the function to be
approximated has very different behaviors across the interval of integration.

Next we turn to the case of a nonlinear phase function g.

3.2. Oscillatory integrals on an interval without stationary points. We
consider (1) for a phase that satisfies g′(x) > g0 > 0 on [a, b]. Changing variables,
we have

I(ω) =

∫ 1

−1

f(x)eiωg(x)dx =

∫ g(1)

g(−1)

f(g−1(y))
d

dy

[
g−1(y)

]
eiωydy. (25)
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Figure 1. Function (24) on the interval [−1, 1] represented via
(22) with M = 100.

The approximation ∣∣∣∣∣f(g−1(y))
d

dy

[
g−1(y)

]
−

M∑
m=1

cme
icθmy

∣∣∣∣∣ ≤ ε,
reduces the problem to the previous case. As long as

max
x∈[−1,1]

g′(x)/min x∈[−1,1]g
′(x)

is moderate, the bandlimit of the integrand’s amplitude will not increase signifi-
cantly. Note that we can always subdivide the interval further so that this ratio
remains moderate.

Our example above in Section 3.1 (up to a constant and a phase factor) may be
interpreted as a change of variables in the integral∫ 1

2

1
4

sin(bx)eiω̃x
4

dx,

where ω̃ = (2n − 1) /2n(l+1)+1ω, so that we reduce the computation of this inte-
gral to the case of linear phase. Such change of variables is used, on appropriate
subintervals, in the next section.

3.3. Oscillatory integrals on an interval containing stationary points. The
principle of stationary phase [34, 10, 43] implies that, for large ω, the main contri-
butions to the value of I(ω) in (1) come from either the endpoints of the interval of
integration or the stationary points. We say that x∗ is a stationary point of order
n− 1 if the first n− 1 derivatives of g vanish at x∗,

g(j) (x∗) = 0, j = 1, . . . , n− 1, but g(n) (x∗) 6= 0.

Iserles and Norsett had shown [26, 27] how to build quadratures for I(ω) in (1)
by approximating the amplitude f via Hermite polynomial interpolation. Their
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Figure 2. Approximation of the integral (21) for the amplitude f
in (24) in the intervals [0, 100] (top) and [10000, 10100] (bottom).
Real part of f is displayed with dashes, imaginary part with dots
and absolute value with a solid line.
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approach reduces the problem to the computation of the first few moments,∫ b

a

xkeiωg(x)dx,

which are assumed to be known. Also, to avoid computation of derivatives of f , a
derivative-free variant is presented in [26].

We demonstrate how to construct a functional representation of such integrals
on the canonical example

I(n)(ω) =

∫ 1

−1

f(x)eiωx
n

dx, ω ≥ 0, (26)

where f is only mildly oscillatory and n ≥ 2 is an integer. The only stationary
point of this integral is at x∗ = 0 and we subdivide the original interval to isolate
the stationary point within a sufficiently small interval. We subdivide the interval
as follows,

[−1, 1] =
[
−1,−2−1

]
∪ · · · ∪

[
−2−l,−2−l−1

]
∪

· · · ∪
[
−2−L−1, 2−L−1

]
∪ · · · (27)

∪
[
2−l−1, 2−l

]
∪ · · · ∪

[
2−1, 1

]
so that we approach the stationary point in a hierarchical fashion. The parameter
L describing the number of levels of subdivision is chosen later. On all subintervals,
except the one about zero, we perform a change of variables in order to use (25).
We show below that, since the intervals become smaller when approaching the
stationary point x∗ = 0, the bandlimit of the integrand decreases exponentially
fast. Once we reach a sufficiently small bandlimit, we evaluate the integral over[
−2−L−1, 2−L−1

]
directly. Hence, by first fixing the desired range of values of ω,

the cost of evaluation depends only logarithmically on the maximum size of ω, i.e.,
it is proportional to the number of levels L in (27).

Since the intervals in (27) are symmetric about zero, we discuss only those where
x > 0. Denoting

I
(n)
l (ω) =

∫ 2−l

2−l−1

f(x)eiωx
n

dx,

the change of variables y =
(
2n(l+1)+1xn − (2n + 1)

)
/ (2n − 1) yields

I
(n)
l (ω) =

e
i

(2n+1)

2n(l+1)+1
ω

2l+1

1

n

(
2n − 1

2

) 1
n
∫ 1

−1

f


(

2n−1
2

y + 2n+1
2

) 1
n

2l+1

 e
i

(2n−1)

2n(l+1)+1
ωy(

y + 2n+1
2n−1

)n−1
n

dy.

(28)

Hence, for any target accuracy, we can always find a value of L such that the

contribution of I
(n)
l (ω) for l > L is negligible. We note that the bandlimit of the

exponential e
i

(2n−1)
2n(l+1)+1

ωy
in (28) decreases exponentially fast as the parameter l

increases.
As in Section 3.1, we approximate∣∣∣∣∣∣∣∣f
(

2−l−1

(
2n − 1

2
y +

2n + 1

2

) 1
n

)
1(

y + 2n+1
2n−1

)n−1
n

−
M∑
m=1

cme
icθmy

∣∣∣∣∣∣∣∣ ≤ ε, (29)
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and obtain

I
(n)
l (ω) ≈ e

i
(2n+1)

2n(l+1)+1
ω

2l
1

n

(
2n − 1

2

) 1
n

M∑
m=1

cmsinc

(
(2n − 1)

2n(l+1)+1
ω + cθm

)
.

Remark 4. If the power n or the bandlimit of

f̃ (y) = f

(
2−l−1

(
2n − 1

2
y +

2n + 1

2

) 1
n

)
(30)

are relatively large, then the number of terms in the approximation of each I
(n)
l (ω)

may be significant. To reduce the number of terms in our representation of I
(n)
l (ω),

we can split the approximation of f̃ (y) from the one for
(
y + 2n+1

2n−1

)−n−1
n

. We

approximate f̃ in the form (17) and use the results in [7] to efficiently approximate∣∣∣∣∣∣∣∣
1(

y + 2n+1
2n−1

)n−1
n

−
M∑
m=1

ρme
−ηmy

∣∣∣∣∣∣∣∣ <
ε̃(

y + 2n+1
2n−1

)n−1
n

, (31)

where ρm and ηm are positive parameters and M is of moderate size, even if n is
very large. The advantage of this approach relies on our ability, via the reduction
algorithms described in Section 2.5, to reduce the overall number of exponentials in

the approximation of the product of f̃ (y) and
(
y + 2n+1

2n−1

)−n−1
n

.

As a result, the value of Il(ω) can be approximated, with an error bounded by
ε̃/2l+1, by a linear combination of integrals of the form

1

2l+1

∫ 1

−1

e

(
i

(
cθ+

(2n−1)
2n(l+1)+1

ω

)
−η

)
y
dy =

sinh
(
i
(
cθ + (2n−1)

2n(l+1)+1ω
)
− η
)

2l
(
i
(
cθ + (2n−1)

2n(l+1)+1ω
)
− η
) ,

for some values θ ∈ [−1, 1] and η > 0. Therefore, for each n, l, and target accuracy
ε, there is an ε̃ such that the error of approximating Il(ω) is within our target
accuracy.

Remark 5. An alternative approximation of the integral in (28) can be obtained
by constructing quadratures for bandlimited exponentials with a weight function.
First, we approximate f̃ in the form (17) (without any additional factor, as above),
thus reducing the problem to the computation of integrals of the type

F (α, p, a) =

∫ 1

−1

1

(y + a)
α e

ipydy, (32)

where a > 1, α ∈ (0, 1) , and p > 0. Second, this last integral is a particular case
of band-limited exponentials integrated with a weight function (see (4)) for which
accurate quadratures can be obtained. In order to construct these quadratures, it is
advantageous (see [4, 38]) to obtain the function F (α, p, a) explicitly. To this end,
we write

1

(y + a)
α =

1

Γ (α)

∫ ∞
0

tα−1e−ate−ytdt,
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and substitute in (32) to obtain

F (α, p, a) =
1

Γ (α)

∫ ∞
0

tα−1e−at
∫ 1

−1

e(ip−t)ydydt

=
eip

Γ (α)

∫ ∞
0

tα−1e−(a+1)t

ip− t
dt− e−ip

Γ (α)

∫ ∞
0

tα−1e−(a−1)t

ip− t
dt.

Using [35, 8.6.4], we arrive at

F (α, p, a) = ie−i(ap+
3
2πα)p1−α [Γ (1− α,−i (a+ 1) p)− Γ (1− α,−i (a− 1) p)] ,

where Γ (α, z) is the incomplete Gamma function.

4. Representations of more complicated oscillatory integrals.

4.1. ExpSin integrals (integrals with highly oscillatory periodic compo-
nents). Next we develop a simple approach to compute

Ie (ω) =

∫ 1

−1

f (x) eτ sinω(αx+β)dx, ω ≥ 0, (33)

where α > 0, β ∈ R, τ ∈ C, τ 6= 0. Clearly, the apparent difficulties in computation
of this integral arise if ω � 1. In this case, the integrand is oscillatory due to the
fact that, for large ω, ω (αx+ β) covers many periods of the sine function. These
type of integrals are considered in [15] (dubbed there ExpSin integrals) in order to
develop an accurate method for solving ordinary differential equations with highly
oscillatory forcing terms (the interest in such integrals stems e.g., from problems
in circuit design). The approach in [15] relies on a combination of constructing
the asymptotics of this integral and using quadrature formulas. Our approach for
evaluating (33) for any ω ≥ 0 appears to be significantly simpler than that in [15].

We approximate f as∣∣∣∣∣f (x)−
M∑
m=1

cme
icθmx

∣∣∣∣∣ ≤ ε

2
e−|Re(τ)|, x ∈ [−1, 1] , (34)

so that it is sufficient to compute

Iem (ω) =

∫ 1

−1

eicθmxeτ sinω(αx+β)dx, ω > 0,

to obtain ∣∣∣∣∣Ie (ω)−
M∑
m=1

cmI
e
m (ω)

∣∣∣∣∣ ≤ ε, (35)

for any desired accuracy ε. For αω ∈ [0, 3π), we evaluate Iem(ω) directly using
quadratures for exponentials in [4]. For αω ≥ 3π, taking into account the period of
the sine function, we split [−1, 1] into subintervals[ π

αω
(2j − 1) ,

π

αω
(2j + 1)

]
(36)
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where −J ≤ j ≤ J , J =
⌊(
αω
π − 1

)
/2
⌋
. Our assumption on αω implies that J ≥ 1.

We have

Iem (ω) =

J∑
j=−J

∫ π
αω (2j+1)

π
αω (2j−1)

eicθmxeτ sinω(αx+β)dx

+

∫ 1

π
αω (2J+1)

eicθmxeτ sinω(αx+β)dx

+

∫ − π
αω (2J+1)

−1

eicθmxeτ sinω(αx+β)dx. (37)

We note that J ≈ ω and that π/ (αω) ≤ 1/3. Changing variables

x =
π

αω
(y + 2j) ,

in the integrals under the sum, we obtain

J∑
j=−J

∫ π
αω (2j+1)

π
αω (2j−1)

eicθmxeτ sinω(αx+β)dx =

π

αω

 J∑
j=−J

eicθm
2π
αω j

∫ 1

−1

eicθm
π
αω yeτ sin(πy+βω)dy.

For the integral over the interval [π (2J + 1) / (αω) , 1], we change variables

x =
π

αω
(py + q) ,

where

p =
αω
π − (2J + 1)

2
,

q =
αω
π + (2J + 1)

2
. (38)

We obtain∫ 1

π
αω (2J+1)

eicθmxeτ sinω(αx+β)dx =
πp

αω
eicθm

π
αω q

∫ 1

−1

eicθm
π
αω pyeτ sin(πpy+πq+βω)dy.

Since

J ≤
αω
π − 1

2
< J + 1,

we observe that p ∈ [0, 1) and, therefore, πp/ (αω) ∈ (0, 1/3). For the integral over
the interval [−1,−π (2J + 1) / (αω)], the change of variables x = −y reduces the
problem to an integral of the previous type. Consequently, we arrive at

Iem (ω) =
π (2J + 1)

αω
σm (αω)um (αω, βω, τ) +

πp

αω
u0 (αω, βω, τ) ,

where

σm (αω) =
1

2J + 1

J∑
j=−J

eicθm
2π
αω j =

sin
(
cθm

π
αω (2J + 1)

)
(2J + 1) sin

(
cθm

π
αω

) , (39)

um (αω, βω, τ) =

∫ 1

−1

eicθm
π
αω yeτ sin(πy+βω)dy,
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and

u0 (αω, βω, τ) = eicθm
πq
αω

∫ 1

−1

eicθm
π
αω pyeτ sin(πpy+πq+βω)dy

+ e−icθm
πq
αω

∫ 1

−1

e−icθm
π
αω pye−τ sin(πpy+πq−βω)dy.

The integrals um (αω, βω, τ) are easy to evaluate using quadratures in [4] since,
for large ω, the bandlimit of the integrand can be bound for large ω as shown
below. Recall that, for small ω, the integral is evaluated directly. Unlike in [15],
our approximation is not asymptotic and may be used for all ω ≥ 0.

In order to estimate the bandlimit of the integrand in the representation of the
functions um, it is enough to estimate the bandlimit of the function h (y) = eτ sin(qy),
for q ∈ (0, π], τ ∈ C, τ 6= 0, and y ∈ [−1, 1]. Using the expansion [1, 9.6.33] with
z = −τ and t = ieiqy, we obtain

eτ sin qy =
∑
n∈Z

i−nIn (τ) einqy,

where In is a modified Bessel function of order n, In (τ) = i−nJn (iτ). Therefore,
for accuracy ε, it is enough to find n0 > 0 such that

|In (τ)| < ε, n ≥ n0,

yielding q ·n0 as the estimate for the bandlimit. From the asymptotic expansion [1,
9.3.1] for large orders n, we obtain

In (τ) ∼ 1√
2πn

( e
n

)n (τ
2

)n
.

Using Stirling’s formula, we conclude that

|In (τ)| ∼ 1

n!

(
|τ |
2

)n
which we use to determine the value of n0.

4.1.1. Example. We illustrate the computation of (33) for f(x) = sin (ax) / (ax),
with a = 20.42035224833366. For this function we constructed the representation
(34) with 20 terms and accuracy 0.2 · 10−15. In this example, we set α = 1, β = 7.7
and τ = 2 and check the accuracy of our algorithm using Mathematica TM (with
high working precision) to numerically evaluate the integral (33) for several selected
values of ω in order to verify the estimate (35). We illustrate the result in Figure 3.
In this example, we evaluated the integral at 10, 000 points in each interval taking
about 3.5 seconds (in all intervals) on a laptop (with no attempt to optimize the
Fortran 90 code).

4.2. Integrals with composite highly oscillatory periodic components.
Our approach for computing (33) is also applicable to the evaluation of the more
general integral

Ig (ω) =

∫ 1

−1

f (x) g (sinω (αx+ β)) dx, ω ≥ 0

where g(s) is smooth and only mildly oscillatory in |s| ≤ 1, α > 0, and β ∈ R.
This oscillatory integral was considered in [25] for β = 0. Indeed, repeating the
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Figure 3. Evaluation of the integral (33), with parameters de-
scribed in (4.1.1), for ω in the intervals [0, 30], [1000, 1030] and
[100000, 100030]. Note the slow decay and the onset of asymptotic
behavior that occurs for relatively small values of ω.
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derivation for (33), it is enough to compute

Igm (ω) =

∫ 1

−1

eicθmxg (sinω (αx+ β)) dx, ω > 0.

As above, for αω ∈ [0, 3π), due to our assumption on the behavior of g, the integrand
can be treated as a band-limited function of x and we evaluate Igm(ω) directly using
quadratures in [4]. For αω ≥ 3π we use the splitting of the interval [−1, 1] in (36)
to obtain

Igm (ω) =

J∑
j=−J

∫ π
αω (2j+1)

π
αω (2j−1)

eicθmxg (sinω (αx+ β)) dx

+

∫ 1

π
αω (2J+1)

eicθmxg (sinω (αx+ β)) dx

+

∫ − π
αω (2J+1)

−1

eicθmxg (sinω (αx+ β)) dx.

We have

J∑
j=−J

∫ π
αω (2j+1)

π
αω (2j−1)

eicθmxg (sinω (αx+ β)) dx =

π

αω

 J∑
j=−J

eicθm
2π
αω j

∫ 1

−1

eicθm
π
αω yg (sin (πy + βω)) dy.

and arrive at

Igm (ω) =
π (2J + 1)

αω
σm (αω) vm (αω, βω) +

πp

αω
v0 (αω, βω) ,

where σm is given in (39),

vm (αω, βω) =

∫ 1

−1

eicθm
π
αω yg (sin (πy + βω)) dy,

and

v0 (αω, βω) = eicθm
πq
αω

∫ 1

−1

eicθm
π
αω pyg (sin (πpy + πq + βω)) dy

+ e−icθm
πq
αω

∫ 1

−1

e−icθm
π
αω pyg (− sin (πpy + πq − βω)) dy

with p and q as in (38). The integrals vm and v0 are only mildly oscillatory and are
evaluated using quadratures in [4].

We observe that using band-limited exponentials allows us to separate the Dirich-
let factor in (39) to combine the contribution of all subintervals except the two small
(leftover) subintervals contributions which are evaluated separately. This strategy
reduces the problem to the evaluation of three mildly oscillatory integrals.
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5. Representations of oscillatory functions. In this section we discuss addi-
tional examples illustrating the efficient representation of highly oscillatory func-
tions. As a first example, consider the Fourier transform of the characteristic func-
tion of an ellipse

f̂(ξ, η) =

∫
x2

a2
+ y2

b2
≤1

e2πi(xξ+yη)dxdy = ab
J1

(
2π
√
a2ξ2 + b2η2

)
√
a2ξ2 + b2η2

, (40)

where a and b are positive. In polar coordinates we have

f̂(ρ, θ) = ab
J1

(
2πρ

√
a2 cos2 θ + b2 sin2 θ

)
ρ
√
a2 cos2 θ + b2 sin2 θ

. (41)

If a 6= b, the function f̂(ρ, θ) is highly oscillatory not only as a function of ρ � 1
(with its bandlimit growing linearly with ρ), but also as a function of θ. Due to

the slow decay of f̂ and its rapid oscillations in θ, representations of this function
via bases (for example, using curvelets [12, 14] or as in [13, 18]) are not efficient for
large ρ since the number of terms grows quadratically with the bandlimit. On the
other hand, using the results in [5, 7], we have∣∣∣∣∣J1(s)

s
−

M∑
m=1

wme
−ηms

∣∣∣∣∣ ≤ ε, s ∈ [0, c], (42)

where M = O(log c) and M = O(log ε−1). In fact, (42) is valid in [0,∞) once
the bandlimit c is chosen to be sufficiently large. We illustrate the error of this
approximation in Figure 4.

Figure 4. Logarithm (base 10) of the approximation error in (42)
for 0 ≤ s ≤ 106 using M = 110 terms and a target accuracy
ε = 10−10. In fact, the error stays below ε for all s ≥ 0.



4094 GREGORY BEYLKIN AND LUCAS MONZÓN

Next, substituting (42) into (41), we obtain the approximation∣∣∣∣∣f̂(ρ, θ)− 2πab

M∑
m=1

wme
−2πηmρ

√
a2 cos2 θ+b2 sin2 θ

∣∣∣∣∣ ≤ ε. (43)

We note that a representation of f̂ in a basis would require a large number of terms
essentially dictated by Nyquist sampling criterion. In contrast our nonlinear ap-
proximation (43) circumvents Nyquist constraint and only requires a small number
of terms, M .

5.1. One-dimensional oscillatory integral transforms. We now consider the
Fourier transform of a radial function f(x) = f(

√
x2

1 + x2
2 + · · ·+ x2

d) in dimension
d. Since the Fourier transform of f is also radial,

f̂ (y) = u

(√
y2

1 + y2
2 + · · ·+ y2

d

)
,

it is easy to see (e.g., by Bochner’s theorem [20, pp. 247]), that the univariate
function u (ρ) is obtained via the Hankel transform,

u (ρ) = (2π)
d
2

∫ ∞
0

f(t)td−1 (ρt)−( d2−1)J d
2−1 (ρt) dt, (44)

where J d
2−1 is the Bessel function of order d

2 − 1 and ρ ≥ 0. We note that if f has

singularities, then the decay of u is slow. Writing u as

u(ρ) =

∫ ∞
0

f̃(t) (ρt)−αJα(ρt) dt, (45)

where α = d/2 − 1 and f̃ (t) = (2π)
d
2 f(t)td−1, we observe that the kernel (ρt)−α

Jα(ρt) is an oscillatory function. Instead of discretizing (45), we will approximate

both, the function f̃ and the kernel by short sums of exponentials. As a consequence,
we will obtain a rational representation for the function u(ρ).

First, by an analysis similar to the one in [2, p. 203], we express the kernel
function x−αJα(x) as a Laplace type integral,

x−αJα(x) =

∫
Γ

a(z)e−zxdz =

∫
R
a(γ (s))γ′ (s) e−γ(s)xds ≈

M∑
m=1

ame
−τmx, (46)

where the contour Γ = {γ (t) : t ∈ R} is in the positive half plane, am, τm ∈ C with
Re (τm) > 0, x > 0, and

a(z) =
2−α

(
1 + z2

)α−1/2

√
πΓ(α+ 1

2 )i
.

Using the nonlinear algorithms described in [5, 7], we can find a contour Γ and
the corresponding parametrization γ where the integrand is only mildly oscillatory.
Therefore, once the path is selected, it is sufficient to use the trapezoidal rule to
discretize the integral to any desired accuracy. Note that the oscillatory behavior
of the Bessel function is now encoded in the imaginary part of the exponents τm
in (46). The fact that the trapezoidal rule over the whole real line could be very
accurate and efficient follows from the following result.
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Let R(h) be the error of using the trapezoidal rule over R with step size h > 0
and shift d ∈ (0, h), ∫

R
g(x) dx = T (h) +R(h),

where

T (h) = Tg(h) = h
∑
n∈Z

g(d+ hn). (47)

A fast decay of the function g implies that, for a given accuracy, only a small number
of terms is used in (47).

From [22, Thm, 5.13], we have

Theorem 5.1. Let g be an analytic function in an open set containing the strip

{z = x+ iy|x ∈ R, |y| ≤ a}
where

∫
R |g(x+ iy)| dx is convergent. Then R(h) satisfies

R(h) =

∫
R

g(x+ iy)

1− e−2πi(x+iy)/h
+

g(x− iy)

1− e2πi(x−iy)/h
dx

for any y with 0 < y < a. Moreover, if g(x) is real-valued for real x, then

|R(h)| ≤ e−πa/h

2 sinh (πa/h)

∫
R
|g(x+ ia)| dx. (48)

Therefore, when g is analytic and bounded in a strip about the real axis, the
trapezoidal rule error decays exponentially fast with the step size h, which is the
behavior we have observed for many integrals related to special functions.

Using (46), we rewrite (45) as

u(ρ) =

∫
R
a(γ (s))γ′ (s)

(∫ ∞
0

f̃(t)e−ρtγ(s)dt

)
ds,

or,

u(ρ) ≈
M∑
m=1

am

(∫ ∞
0

f̃(t)e−τmρtdt

)
. (49)

Approximating

f̃(t) ≈
L∑
l=1

ble
−βlt, (50)

where bl, βl ∈ C and Re (βl) > 0 and substituting (50) into (49), we obtain

u(ρ) ≈
M∑
m=1

L∑
l=1

blam
βl + τmρ

. (51)

The number of terms in this expression can be minimized using the results in Section
2.5. Alternatively, using the integral representation in (46), we obtain

u(ρ) =

L∑
l=1

bl

∫
R

a(γ (s))γ′ (s)

βl + γ (s) ρ
ds,

which could be discretized and optimized via the reduction algorithm of Section 2.5
to yield the desired rational approximation of u.

We note that the results for radial functions can be incorporated into a more
general construction using the Funk-Hecke formula for the Fourier transform of the
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product of radial functions and spherical harmonics since this more general case can
also be reduced to the evaluation of Hankel transforms [2, Thms 9.10.3 and 9.10.5].

Remark 6. We have several choices [4, 5, 6, 7] on how to efficiently approximate

f̃ in (50) and this decision depends on properties of the functions f̃ and how we
would like to represent the function u.

6. Conclusions. As we have demonstrated, using nonlinear approximation of func-
tions via exponentials (similarly, in other situations via Gaussians or rational func-
tions) can drastically simplify the evaluation of oscillatory integrals. Indeed, as
a result of such approximations, the integrals are evaluated explicitly and yield a
functional representation within any user-selected accuracy.

Appendix.

Proof of Lemma 2.2.

Proof. We start by demonstrating that u in (7) can also be written as

u (x) =

M∑
l=1

eicθlθRl (x) . (52)

Indeed, using (14) and that the matrix rkl in (15) is symmetric, we obtain

M∑
m=1

Rm (θ) eicθmx =

M∑
m=1

M∑
l=1

rmle
icθlθeicθmx =

M∑
l=1

eicθlθ

(
M∑
m=1

rlme
icθmx

)
,

which yields (52).
Next, substituting x = θm in (52), we obtain the exact collocation identity

eicθmθ = u (θm) , l = 1, . . . ,M. (53)

Defining the function

ρ (x) =
∣∣eicθx − u (x)

∣∣2 = 1−
M∑
m=1

Rm (θ) eic(θm−θ)x −
M∑
m=1

Rm (θ)e−ic(θm−θ)x

+

M∑
m,n=1

Rm (θ)Rn (θ)eic(θm−θn)x,

we observe that it is a linear combination of exponentials with bandlimit at most
2c, so that we can write

ρ (x) =

L∑
l=1

ρle
2icτlx,

with |τl| ≤ 1. Integrating ρ (x) and approximating the integral by the quadrature
(5), we derive the inequality∣∣∣∣∣

∫ 1

−1

ρ (x) dx−
L∑
l=1

wlρ (tl)

∣∣∣∣∣ ≤ ε2∑
l

|ρl| ,

where
∑L
l=1 wlρ (tl) = 0 due to the collocation identity (53). Therefore, we conclude

that ∥∥eicθx − u (x)
∥∥
L2 =

(∫ 1

−1

ρ (x) dx

) 1
2

≤

(∑
l

|ρl|

) 1
2

ε,
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and it remains to estimate the value of the constant (
∑
l |ρl|)

1
2 . Since

∑
l

|ρl| ≤ 1 + 2

M∑
m=1

|Rm (θ)|+

(
M∑
m=1

|Rm (θ)|

)2

=

(
1 +

M∑
m=1

|Rm (θ)|

)2

,

the results follows.

Regarding an estimate of the L∞ approximation error, the analysis in [4] assumed
that the PSWFs have a uniform bound. However, the proven estimate (see [11,
Theorem 3.1] and [36]) is

‖ψj‖∞ ≤ κ
√
j + 1, j ≥ 2c

π
, (54)

where κ ≈ 2.35. A possible improvement ‖ψj‖∞ ≤
√
j + 1/2 is suggested by the

numerical evidence in [36, 37]. This potential growth of the uniform norm does not
change the conclusion in [4] since the contribution of PSWFs with large indices is
completely suppressed by the exponential decay of the corresponding eigenvalues.
We have

Lemma 6.1. For any target accuracy ε > 0 and for any θ ∈ [−1, 1] consider the
function

v (x) =

M∑
l=1

wm

M−1∑
j=0

ψj (θ)ψj (θm)

 eicθmx, (55)

where ψj are the PSWFs for bandlimit c and {θm}Mm=1 and {wm}Mm=1 are nodes
and quadrature weights satisfying (5). Then we have∥∥eicθx − v (x)

∥∥
L∞[−1,1]

≤ Cε, (56)

where C is independent of θ and can be estimated as

C =
√

2ε2
M−1∑
j=0

‖ψj‖∞
|λj |

+ κ2
∞∑
j=M

|λj | (j + 1) ,

where κ ≈ 2.35.

Proof. The spectral theorem for the operator Fc in (9) yields

eicθx =

∞∑
j=0

λjψj (θ)ψj (x) ,

where |θ| , |x| ≤ 1. Therefore, using (54) we obtain∣∣∣∣∣∣eicθx −
M−1∑
j=0

λjψj (θ)ψj (x)

∣∣∣∣∣∣ ≤
∞∑
j=M

|λj | |ψj (θ)| |ψj (x)| ≤ κ2
∞∑
j=M

|λj | (j + 1) ,

(57)
where M is the number of quadrature nodes in (5). From (10) and (9), we also have

µjψj (x) =
c

π

∫ 1

−1

(
sin c (x− t)
c (x− t)

− 1

2

M∑
l=1

wle
icθl(x−t)

)
ψj (t) dt

+
c

2π

∫ 1

−1

M∑
l=1

wle
icθl(x−t)ψj (t) dt
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and ∫ 1

−1

M∑
l=1

wle
icθl(x−t)ψj (t) dt =

M∑
l=1

wle
icθlxλjψj (θl)

which, by (6), leads to the estimate∣∣∣∣∣µjψj (x)− cλj
2π

M∑
l=1

wle
icθlxψj (θl)

∣∣∣∣∣ ≤ ε2 c

2π

∫ 1

−1

|ψj (t)| dt ≤ ε2 c√
2π
.

Since µj = c |λj |2 /(2π), we have∣∣∣∣∣λjψj (x)−
M∑
l=1

wle
icθlxψj (θl)

∣∣∣∣∣ ≤
√

2ε2

|λj |
. (58)

Combining (57) and (58), we obtain∣∣∣∣∣∣eicθx −
M−1∑
j=0

ψj (θ)

M∑
l=1

wle
icθlxψj (θl)

∣∣∣∣∣∣ ≤ √2ε2
M−1∑
j=0

‖ψj‖∞
|λj |

+ κ2
∞∑
j=M

|λj | (j + 1) ,

which is the desired estimate.

Remark 7. In our construction of quadratures in [4, 38], for a desired accuracy ε
and bandlimit c, we obtain M = M (ε, c). We observe that in all cases M ≥ 2c

π and
both |λM | ≈ ε and |ηM | ≈ ε, so that the error is of order ε. Since we always verify
the value of C in (56), we know that estimate (56) is not tight. However, the key
point is that we can always attain the desired accuracy of the quadrature.

Remark 8. Note that the function v in (55) is related to the function u in the L2

estimate of Lemma 2.2. In fact, if in the definition of v we replace the PSWFs by
the approximate prolates and use (16), we obtain

M∑
m=1

wm

 M∑
j=1

Ψj (θ) Ψj (θm)

 eicθmx =

M∑
m=1

Rm (θ) eicθmx,

which is the definition of u in (7).
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[37] A. Osipov, V. Rokhlin and H. Xiao, Prolate Spheroidal Wave Functions of Order Zero:
Mathematical Tools for Bandlimited Approximation, vol. 187, Springer Science & Business

Media, 2013.

[38] M. Reynolds, G. Beylkin and L. Monzón, On generalized Gaussian quadratures for bandlim-
ited exponentials, Appl. Comput. Harmon. Anal., 34 (2013), 352–365.

[39] D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty IV. Extensions
to many dimensions; generalized prolate spheroidal functions, Bell System Tech. J., 43 (1964),

3009–3057.

[40] D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty V. The dis-
crete case, Bell System Tech. J., 57 (1978), 1371–1430.

[41] D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Review ,

25 (1983), 379–393.
[42] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncer-

tainty I, Bell System Tech. J., 40 (1961), 43–63.

[43] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton,

NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[44] H. Xiao, V. Rokhlin and N. Yarvin, Prolate spheroidal wavefunctions, quadrature and inter-
polation, Inverse Problems, 17 (2001), 805–838.

Received May 2015; revised October 2015.

E-mail address: beylkin@colorado.edu

E-mail address: lucas.monzon@colorado.edu

http://www.ams.org/mathscinet-getitem?mr=MR3136430&return=pdf
http://dx.doi.org/10.1007/978-1-4614-8259-8
http://dx.doi.org/10.1007/978-1-4614-8259-8
http://www.ams.org/mathscinet-getitem?mr=MR3027908&return=pdf
http://dx.doi.org/10.1016/j.acha.2012.07.002
http://dx.doi.org/10.1016/j.acha.2012.07.002
http://www.ams.org/mathscinet-getitem?mr=MR0181766&return=pdf
http://dx.doi.org/10.1002/j.1538-7305.1964.tb01037.x
http://dx.doi.org/10.1002/j.1538-7305.1964.tb01037.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://www.ams.org/mathscinet-getitem?mr=MR710468&return=pdf
http://dx.doi.org/10.1137/1025078
http://www.ams.org/mathscinet-getitem?mr=MR0140732&return=pdf
http://dx.doi.org/10.1002/j.1538-7305.1961.tb03976.x
http://dx.doi.org/10.1002/j.1538-7305.1961.tb03976.x
http://www.ams.org/mathscinet-getitem?mr=MR1232192&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1861483&return=pdf
http://dx.doi.org/10.1088/0266-5611/17/4/315
http://dx.doi.org/10.1088/0266-5611/17/4/315
mailto:beylkin@colorado.edu
mailto:lucas.monzon@colorado.edu

	1. Introduction
	2. Preliminaries
	2.1. Approximation of functions via exponentials with purely imaginary exponents
	2.2. Prolate spheroidal wave functions
	2.3. Numerical construction of interpolating bases for band-limited functions 
	2.4. Approximation of functions via decaying oscillatory exponentials
	2.5. Reduction algorithms

	3. Representation of Fourier-type integrals
	3.1. A representative example 
	3.2. Oscillatory integrals on an interval without stationary points. 
	3.3. Oscillatory integrals on an interval containing stationary points

	4. Representations of more complicated oscillatory integrals
	4.1. ExpSin integrals (integrals with highly oscillatory periodic components)
	4.2. Integrals with composite highly oscillatory periodic components

	5. Representations of oscillatory functions
	5.1. One-dimensional oscillatory integral transforms

	6. Conclusions
	Appendix
	Proof of Lemma 2.2

	REFERENCES

