Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION August 2018

Instructions:	

Do two of three problems in each section (Stat and Prob).	Prob
Place an \mathbf{X} on the lines next to the problem numbers	1
that you are NOT submitting for grading.	2
	3
Please do not write your name anywhere on this exam.	Stat
You will be identified only by your student number.	4
Write this number on each page submitted for grading.	5
Show all relevant work.	6

Student Number ____

Probability Section

1. Probability: Problem 1

Let $c \in \mathbb{R}$ be a constant, and consider a random vector (X, Y) taking values in \mathbb{R}^2 with probability density function:

$$f(x,y) = \frac{1}{2\pi} \exp\left\{\frac{2cxy - (1+c^2)x^2 - y^2}{2}\right\}.$$

- (a) Determine the distribution of X.
- (b) Determine the conditional distribution of Y given X.
- (c) Finally, determine a necessary and sufficient condition on c so that X and Y are independent.

2. Probability: Problem 2

Fix $N \in \mathbb{N}$. Let Q be a $N \times N$ matrix satisfying $q_{ij} \geq 0$ for all $i \neq j$ and $q_{ii} = -\sum_{j\neq i} q_{ij}$ for all i. Let X be a continuous-time Markov chain with rate matrix Q. Consider $\tau := \inf\{t \geq 0 : X_t \neq X_0\}$, the first time X changes its state. Recall that

$$\tau \sim Exponential(-q_{ii})$$
 if $X_0 = i$, and $\mathbb{P}(X_\tau = j \mid X_0 = i) = -q_{ij}/q_{ii}$. (1)

Suppose $X_0 = i$. Given a function $f : \{1, 2, ..., N\} \to \mathbb{R}$, this question aims to find a second-order expansion of $\mathbb{E}\left[\int_0^{\varepsilon} f(X_t)dt\right]$ in ε , as $\varepsilon \downarrow 0$.

For each $\varepsilon > 0$, consider the events A, B, and C that on the interval $[0, \varepsilon]$, the state of X does not change, changes exactly once, and changes twice or more, respectively.

- (a) Use (1) and $e^x = \sum_{n=0}^{\infty} x^n/n!$ to show that $\mathbb{P}(A) = 1 + q_{ii}\varepsilon + \frac{1}{2}q_{ii}^2\varepsilon^2 + o(\varepsilon^2)$. From this, prove that $\mathbb{E}\left[\int_0^{\varepsilon} f(X_t)dt \mid A\right] \mathbb{P}(A) = f(i)\varepsilon + q_{ii}f(i)\varepsilon^2 + o(\varepsilon^2)$.
- (b) Find the conditional density function of τ given that $\tau \leq \varepsilon$. (**Hint:** You may first derive the conditional distribution of τ given that $\tau \leq \varepsilon$).
- (c) Let $\tau' := \inf\{t \ge \tau : X_t \ne X_\tau\}$, the second time X changes its state. Since $B = \{\tau \le \varepsilon < \tau'\}$, the quantity $\mathbb{E}\left[\int_0^{\varepsilon} f(X_t)dt \mid B\right] \mathbb{P}(B)$ can be computed as

$$\mathbb{P}(\tau \le \varepsilon) \mathbb{E}\left[\left(\int_0^\tau f(i)dt + \int_\tau^\varepsilon f(X_t)dt \right) \mathbb{P}(\tau' > \varepsilon \mid \tau) \mid \tau \le \varepsilon \right].$$
(2)

Prove, by using (1) and part (b), that (2) is equal to

$$\sum_{j \neq i} q_{ij} \int_0^\varepsilon \left(f(i)\ell + f(j)(\varepsilon - \ell) \right) e^{q_{ii}\ell} e^{q_{jj}(\varepsilon - \ell)} d\ell.$$
(3)

(d) Note that (3) is equal to $\sum_{j \neq i} q_{ij} \int_0^{\varepsilon} (f(i)\ell + f(j)(\varepsilon - \ell)) d\ell + o(\varepsilon^2)$. Use this, along with (a), (c), and $\mathbb{P}(C) = o(\varepsilon^2)$ (You don't need to prove this), to show that

$$\mathbb{E}\left[\int_0^{\varepsilon} f(X_t)dt\right] = f(i)\varepsilon + \frac{1}{2}(\vec{f} \cdot Q_i)\varepsilon^2 + o(\varepsilon^2),$$

where $\vec{f} := (f(1), f(2), ..., f(N))$ and Q_i is the i^{th} -row of Q.

3. Probability: Problem 3

Let $\{Z_n\}_{n\in\mathbb{N}}$ be i.i.d. random variables with $Z_n \sim Exponential(1)$, and $\Lambda(t)$ be a nonnegative function that is integrable on [0,T] for all T > 0. Consider the sequence of random times:

$$\tau_0 := 0, \quad \tau_n := \inf \left\{ t \ge \tau_{n-1} : \int_{\tau_{n-1}}^t \Lambda(s) ds \ge Z_n \right\} \quad \forall n \in \mathbb{N}.$$

Define the counting process N by N(t) := n for $t \in [\tau_n, \tau_{n+1})$.

(a) Show that for any t > 0 and $n \in \mathbb{N}$,

$$\mathbb{P}\left(N(t) = n \mid \tau_n\right) = \exp\left(-\int_{\tau_n}^t \Lambda(s)ds\right) \mathbb{1}_{\{\tau_n < t\}}$$

For (b), (c), and (d) below, assume that $\Lambda(t) \equiv \lambda$ for some constant $\lambda > 0$.

- (b) What can you say about the sequence of random variables $\{\tau_n \tau_{n-1}\}_{n \in \mathbb{N}}$? Justify!
- (c) Based on part (b), what can you conclude about the process N?
- (d) In particular, what's the distribution of τ_n for $n \ge \mathbb{N}$? Use the distribution of τ_n and part (a) to derive $\mathbb{P}[N(t) = n]$ for all $n \in \mathbb{N}$ and t > 0.

Statistics Section

4. Statistics: Problem 4

Let X_1, X_2, \ldots, X_n be a random sample from the Normal distribution with mean θ and variance 1, with $\theta \in \mathbb{R}$.

- (a) Show that the best unbiased estimator of θ^2 is given as $\bar{X}^2 1/n$.
- (b) Calculate the variance of the estimator $\bar{X}^2 1/n$. (Recall that for $Y \sim \chi^2(k)$, E(Y) = k, and V(Y) = 2k.)
- (c) Is the estimator $\bar{X}^2 1/n$ efficient? Explain.
- (d) Find the maximum likelihood estimator (MLE) for θ^2 , and find its bias and variance.
- (e) Which estimator, $\bar{X}^2 1/n$ or the MLE estimator, has a lower mean square error (MSE)? Recall that the MSE of an estimator is defined as $MSE(\hat{\theta}) = B(\hat{\theta})^2 + V(\hat{\theta})$ (bias squared plus variance).
- 5. Statistics: Problem 5

Let X_1, X_2, \ldots, X_n be a random sample from a Uniform $(\theta, 2\theta)$ distribution, where $\theta > 0$.

- (a) Find the method of moments (MOM) estimator of θ , $\hat{\theta}_{MOM}$. (Recall that MOM estimators are obtained by equating the sample moments with theoretical moments, and solving for θ).
- (b) Find the MLE of θ , $\hat{\theta}_{MLE}$, and find a constant k such that $E_{\theta}(k\hat{\theta}_{MLE}) = \theta$
- (c) Which of these two estimators can be improved using sufficiency, and how?
- 6. Statistics: Problem 6

Let X_1, \ldots, X_n be independent and identically distributed random variables, each with probability density function $f(x; \theta) = \theta x e^{-\theta x^2/2}$ for $x \ge 0$.

(a) Determine the distribution of $\theta \sum_{i=1}^{n} X_i^2/2$.

For the next two parts, leave your final answer in terms of the critical values of a suitable distribution.

- (b) Using part (a), derive a $100(1 \alpha)\%$ lower-confidence bound for θ .
- (c) Using part (a), derive the uniformly most powerful (UMP) test of size α for testing $H_0: \theta = 1$ versus $H_1: \theta > 1$.