
Homework 9 and 10
APPM 4720/5720 Spring 2017
Advanced Convex Optimization

Due date: Friday, Mar 24 2017
Theme: Duality again Instructor: Dr. Becker

Instructions Collaboration with your fellow students is allowed and in fact recommended, although direct
copying is not allowed. The internet is allowed for basic tasks. Please write down the names of the students
that you worked with. An arbitrary subset of these questions will be graded.

Reading Read the rest of chapter 5 in [BV2004].

Background: compressed sensing
We will introduce compressed sensing along with an example. The basic idea of compressed sensing is that if
a signal x ∈ Rn is compressible (i.e., it only has k nonzero entries), and we acquire it with suitably incoherent
linear sampling, then we can recover the true signal with about k log(n/k) measurements, rather than all n
samples that we would need for a standard matrix inversion. We will leave the notion of “incoherence” vague
for now, but note that the time and frequency domains are roughly incoherent (for the same reason that we
have a time-frequency uncertainty principle). For background on compressed sensing, see the review article
E. J. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine,
March 2008 21-30.
Let us make an concrete example with an audio signal. We’ll take the “Hallelujah” chorus from Handel’s

Messiah, which, conveniently, is included as a .mat file with Matlab. Run1 load handel.mat to load the
variables y and Fs, where y ∈ RN with N = 73113, and Fs = 8192 meaning the sample rate is 8.1 kHz.
According to the Shannon-Nyquist sampling theorem, this means the data contains frequencies up to about
4 kHz, which is not that high (kids can hear up to about 20 kHz, older adults up to maybe 15 kHz), but
still contains most of the notes of interest — for comparison, the note “A” above middle “C”, called “A4”,
is 440 Hz, and so 4 kHz allows for 3 octaves above this.
We can see the frequencies in the signal y in the upper-left plot of Fig. 1. There are two dominant tones,

one at about 575 Hz and another at 1.13 kHz. Of course the tones are not static in time, as this is music;
see Fig. 2 for the spectrogram of the signal, which shows the spectrum (frequencies) over time.
Suppose we want to store less data, and only sample every-other-entry from y. This creates an effective

sample rate of Fs/2, leading to a max resolvable frequency of 2 kHz, which does not affect the sound quality
much. But if we try to sample every-fourth-entry from y, so the sample rate is Fs/4, then the max resolvable
frequency is 1024 Hz, which is below our second dominant tone. If we just downsample the signal, we alias
the higher-frequencies, and have a new spurious note at 924 Hz, which is the aliased version of the 1.13 kHz
note (that is, our new cutoff frequency is 8192/8 = 1024 and 924 is about the same amount under 1024 as
1130 is over 1024). See the top-right plot of Fig. 1. You can hear the sound of this new signal following the
Matlab/python code posted online, and it should sound weird.
If we can’t hear that highest frequency, it is better to just remove it and not have it alias. The bottom

row of Fig. 1 shows (left) a low-pass filtered version of the signal, and (right) the downsampled version of
this. We have lost the high notes, but at least there are no weird aliased notes folded in.

1scripts for recreating this section in Matlab and Python are on the course github page

1

https://statweb.stanford.edu/~candes/papers/spm-robustcs-v05.pdf
https://statweb.stanford.edu/~candes/papers/spm-robustcs-v05.pdf
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Aliasing
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Figure 1: Estimates of the periodogram of the “Handel” signal using the pwelch method with a Modified
Bartlett-Hanning window of length 1000.
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Figure 2: Spectrogram of the “Handel” sound file. In Matlab, this is generated via load handel.mat;
spectrogram(y,5e2,[],[],Fs).
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Figure 3: MDCT coefficients of the Handel signal

Is there any way to recover our signal using only N/4 measurements? By looking at the spectrogram in
Fig. 2, we see that most entries in the time-frequency plane are negligible (remember, this is in dB, which is
a logarithmic scale), so we could set these to zero and have very little effect on sound quality.
More specifically, we are going to consider using version of the modified discrete cosine transform (MDCT).

The DCT is like the FFT/DFT in that it maps to a frequency space, but has the advantage of being real-
valued. We will take the DCT of blocks of the signal (we’ll use a block-length of 1024), so that we capture
the instantaneous note, rather than an average of all notes. We also want to window each block so that we
have sharp frequency peaks, but this means we should have the blocks overlap. This is a linear map, and
we’ll represent it by the symbol D, and it maps Rn to R2n (actually, it will map R73113 to R146226 since
we will zero-pad y to be an even multiple of the block size). We use a partition-of-unity window so that
DTD = In). The code to construct D and DT is provided on the github page.
If we let c = D(y) be the MDCT coefficients of our audio signal, only a few coefficients of c are large. If

we sort them by absolute value, we see in Fig. 3 that we only need to keep a handful of them (much less
than a quarter) to faithfully resolve the signal to, say, 90% accuracy.

Compressed sensing takes advantage of the sparsity of c as long as we have incoherent measurements.
Also note that since DTD = In, that given c = Dy, we can recover y = DT c. Note: from now on, we will
switch from “c” to “x” to align with usual optimization notation, since this will be our optimization variable.
Let Ψ be the sampling operator that takes, on average, every fourth sample, and collect the data b = Ψ(y).

It is important that we take samples at random, and not take exactly every fourth sample, otherwise nothing
can be done about the loss of high frequency. Then compressed sensing solves the basis pursuit problem

minimize
x

‖x‖1 (BP)

subject to ΨDTx = b

Solving (BP) is the goal of this week’s homework. It is a linear program, but not easy to solve with usual
LP methods since they cannot take advantage of the structure of the MDCT. We will exploit the fact that
we can use last week’s proximal/projected gradient descent (or FISTA) code to solve a similar least-squares
problem

minimize
x

‖ΨDTx− b‖2 (LSτ )

subject to ‖x‖1 ≤ τ

Note that when we actually solve (LSτ ), we can replace its objective with 1
2‖ΨD

Tx− b‖2
2, so that we have

a smooth objective. The (BP) and (LSτ ) can be made to be equivalent if we choose the right value of τ ; in
particular, if xBP solves (BP), then we should choose τ? = ‖xBP ‖1 (but of course we don’t know this value).
For all τ ≥ τ?, the optimal value of (LSτ ) is 0; for all τ < τ?, the optimal value is strictly bigger than 0.
Notation: let A = ΨDT and f0(x) = ‖Ax− b‖2.

Homework 9: derivatives via the dual problem
Read Homework 10 if you want motivation for this section.
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https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
https://en.wikipedia.org/wiki/Window_function


Problem 1: Introduce a slack variable z such that Ax+ z = b, and Lagrange multiplers λ (for the ‖x|1 ≤ τ
constraint) and ν (for the Ax + z = b constraint), and write down the Lagrangian and dual
function for (LSτ ) (really, for the modified version of (LSτ ) that has the slack variables).

Problem 2: Can we guarantee strong duality?

Problem 3: Let xτ be the solution to (LSτ ), and let σ(τ) = ‖Axτ − b‖2 be the corresponding value of the
objective. Suppose λτ and ντ are dual optimal variables. What is σ′ (that is, dσ/dτ) ? Hint:
we covered this in class.

Problem 4: What are the KKT conditions for (LSτ )?

Problem 5: Suppose we are given the primal solution xτ , use the stationarity KKT condition to find the
optimal Lagrange multiplier ν. Then use this to find the optimal Lagrange multiplier λ.

Homework 10: Compressed sensing
You may use the files on the class github website, or your classmates’ files from the previous homework.

Problem 1: Solve (BP) using CVX/CVXPY, and making the matrix A and b to be whatever you want
(but small dimensions, e.g., A ∈ R10×20). Call this solution xBP .

Deliverables: this is short, so include both a printed write-up, as well as code uploaded to
the google drive.

Problem 2: Using τ = ‖xBP ‖1, solve (LSτ ) using your projected/proximal gradient descent (or FISTA)
code from last week’s homework (or from the solutions). You will need to have a function that
projects onto the `1 ball, and this is provided to you on the github page. Verify that your
solution xτ agrees with xBP to at least a few digits of accuracy.

Deliverables: include both a printed write-up of the main code, as well as code uploaded
to the google drive. Please upload your gradient descent method from last week, but you do
not need to include this in the print-out.

Problem 3: Now assume we do not know the right value of τ . For a given τ , we can find xτ , and hence
evaluate σ(τ). Our goal is to find the smallest τ such that σ(τ) = 0, so that we are solving
(BP). We can solve σ(τ) = 0 via Newton’s method:

τk+1 = τk − σ(τ)/σ′(τ).

Using the results from Homework 9, solve for the right value of τ using a few iterations
of Newton’s method (each iteration requires a call to your proximal gradient descent code).
Verify that you converge to the right τ found in the previous step, and that your final solution
agrees with xBP . Note: this approach was first developed in the paper Probing the Pareto
frontier for basis pursuit solutions by E. van den Berg and M. P. Friedlander, SISC (31)2 2008.

Deliverables: include both a printed write-up of the main code, as well as code uploaded
to the google drive.

Problem 4: Make the linear operators Ψ and ΨT (but do not make them explicit matrices, which would kill
performance). Now, apply the method of Problem 3 using A = ΨDT and c = x with b = Ψ(y)
where y is the Handel audio signal. Recover c, and set ŷ = D(c). Play the sound file ŷ. Have
we done a good job recovering the sound?

Deliverables: include both a printed write-up of the main code, as well as code uploaded
to the google drive. Include some brief discussion in your write-up.

Problem 5: Optional: we took, on average, one fourth of all entries from y. How much lower can you go
and still faithfully recover the signal?
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http://github.com/stephenbeckr/convex-optimization-class
https://www.cs.ubc.ca/~mpf/pubs/probing-the-pareto-frontier-for-basis-pursuit-solutions/
https://www.cs.ubc.ca/~mpf/pubs/probing-the-pareto-frontier-for-basis-pursuit-solutions/


Problem 6: Optional: another method to solve (BP) is using the Augmented Lagrangian method, so
implement this and compare with the result from Problem 1. See Nocedal and Wright’s
book and their “Penalty and Augmented Lagrangian” chapter. This approach is the same as
the “Bregman iteration” approach of Bregman Iterative Algorithms for `1-Minimization with
Applications to Compressed Sensing by Yin et al. 2008.

Rubric for the final project
The final project is due the last week of class, and consists of a 10 minute presentation and a short paper.
There is no minimum length to the paper, but aim for 5 to 10 pages of text and figures. If the project has a
computational aspect, you can upload the code to the google drive folder.
If you really want to, you can write a longer, much more detailed paper and skip the presentation.
All projects should be finished by the Monday of the last week of class, May 1. On that day, we will

determine which groups present which day.
We encourage students to form groups (but three students/group max).
The project is worth 25% of the final grade in the class, and cannot be dropped.
The project will be graded according to the following rubric:

Component Percent of grade High standard Medium standard

Clear non-trivial problem 
is formulated 15% Problem is of suitable difficulty, 

and clearly defined

Problem a bit 
too easy or too 
hard, or ill-
defined

Problem is well-
motivated 10%

Problem is interesting, and the 
reasons why are clearly 
explained

Problem is 
interesting but 
this is not 
explained, or 
explanations 
are lacking

Problem involves 
significant amount of 
theory or computing

10%

Problem requires synthesis of 
material learned in class, though 
not necessarily at the level of a 
professional journal paper

Problem 
requires a bit of 
material learned 
in class, but not 
that much

Alternatives approaches 
are considered 15%

Several approaches are 
considered, and there is support 
behind the approach taken. 
Alternative approaches need not 
be exhaustively listed, but a few 
categories of alternative 
approaches should be described

A few but not 
enough 
alternatives are 
discussed, or, it 
is not clear why 
your approach 
was chosen

Final result achieved, or 
obstacles discussed 15%

Problem is solved, or it is made 
clear why it was infeasible to 
solve it

Problem is 
partly solved, 
but no 
discussion of 
why it wasn't 
fully solved

Generates valid 
conclusions 15%

Report or presentation makes 
concluding remarks that are 
useful for the reader/listener

No interesting 
final comments, 
other than a 
summary of 
work 
completed. No 
analysis

Communication (report 
and possibly 
presentation)

20%

Well-organized and clear, logic 
easy to follow. Words are 
precise, jargon is appropritae. 
Figures presented as necessary. 
Grammatically correct

Follows high 
standard most 
of the time

5

http://www.springer.com/us/book/9780387303031
http://www.springer.com/us/book/9780387303031
http://epubs.siam.org/doi/abs/10.1137/070703983
http://epubs.siam.org/doi/abs/10.1137/070703983

