
Homework 3 and 4
APPM 4720/5720 Spring 2017
Advanced Convex Optimization

Due date: Friday, Feb 10 2017
Theme: Convex functions Instructor: Dr. Becker

Instructions Collaboration with your fellow students is allowed and in fact recommended, although direct
copying is not allowed. The internet is allowed for basic tasks. Please write down the names of the students
that you worked with. An arbitrary subset of these questions will be graded.

Reading Read chapter 3.1, 3.2 and 3.3 in [BV2004]. Students are strongly advised to skim appendices
A and C in [BV2004] to look for unfamiliar material (and read in more detail if there is unfamiliar material)

Homework 3
Problem 1: Find a 2D function f(x, y) such that x 7→ f(x, y) is convex for every y, and y 7→ f(x, y) is

convex for every x, but f is not a convex function (that is, it is not jointly convex in (x, y).

Problem 2: [BV2004] Problem 3.14

Problem 3: [BV2004] Problem 3.34. Note: The “Minkowski function” is also known as a gauge [not to
be confused with other notions of “gauge” used in math and physics], and a particular type
of gauge, generated by the convex hull of a compact set of centered “atoms” is known as the
“atomic gauge” or “atomic norm.” The theory of these atomic gauges has been exploited a lot
in the past 5 years in theoretical signal processing (beginning with The convex geometry of
linear inverse problems), as they are a method to generate convex relaxations. For example,
the atomic norm created by sparse, bounded atoms is the `1 norm; the low-rank, bounded
matrix atoms generate the nuclear norm; etc. They are particularly useful for super-resolution
and tensor approximations.

Problem 4: [BV2004] Problem 3.36(a)

Homework 4: deblurring
We will do deblurring of a 1D signal. Given a filter h = exp(-[-2:2].^2/2) of length L = 5, and a signal x
of length N = 100, then the discrete circular/periodic convolution y = h ? x is (assuming 1-based indexing,
Matlab notation)

y[j] =
L∑

i=1
x[j − i+ 1]h[i], j = 1, . . . , N

with the convention that we “wrap” x to make it periodic, e.g., define x[j] = x[N+j] when necessary. (Note:
the ugly +1 in the formula is due to the 1-based indexing). To perform the circular convolution in Matlab,
use either ifft( fft(x).*fft(h,N) ) or cconv(x,h,N).
A slightly more realistic model uses a non-circular convolution, e.g., something like Matlab’s conv(_,_,’same’)

function, and you are welcome to do that, but it will make the homework a little more complicated (the
main issues are extra zero-padding and truncation). Talk to the instructor if you would like to pursue this
and need help.
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http://arxiv.org/abs/1012.0621
http://arxiv.org/abs/1012.0621


The convolution (whether circular or not) is a linear operator and is used to represent blurring. We will
denote the operator as B, and we assume that some blurred and noisy measurements are acquired of a signal
x, i.e., y = Bx+ z where z is stochastic noise. In particular, choose z iid where zi ∼ N (0, σ2) for standard
deviation σ = 0.2. We will let xi = 0 for all i = 1, . . . , 100 except for x10 = 1, x13 = −1, x50 = 0.3, x70 = −0.2.
The filter is h[j] = e−(j−3)2/2 for j = 1, 2, . . . , 5. See Fig. 1.
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Figure 1: The original signal x and its blurred and noisy version y

We will estimate x using an optimization model (of course!). Our estimator will be:

x̂ ∈ argmin
x
‖x‖1 s.t. ‖Bx− y‖2 ≤ ε (1)

where we choose ε = σ
√
N since if we evaluate ‖Bx − y‖2

2 at the original signal x, this gives ‖z‖2
2, which is

a χ2 random variable with mean σ2N .

Problem 1: Before we can solve Eq. (1), we need a more explicit representation of B. The blur is a linear
operator, so we can build up its matrix representation explicitly by evaluating its output given
a complete set of inputs (and the most straightforward choice is to use the standard unit basis
as the input).
First, code up a blur function B : RN → RN defined by x 7→ x?h; that is, use the fixed filter

h, and let x be an input. You may use existing convolution code if you wish (e.g., in Matlab,
cconv(x,h,N)).
Then write a function implicit2explicit that takes as input a linear function, such as B,

and information on the size of the domain (i.e., N), and returns an explicit matrix B such that
B(x) = B · x.

Problem 2: Solve the model (1) using a solver of your choice (e.g., cvx or cvxpy), and using the explicit
matrix B calculated above. Make a single plot showing (1) the original signal x, (2) the blurred
and noisy version y, and (3) your estimate x̂.

Problem 3: We will now try to scale this to larger N . As N grows, it becomes disadvantageous to use
an explicit matrix B to represent the blur, since this costs O(N2) to calculate B · x, as well
as the time it takes to build B in the first-place. Using fast convolution, B(x) takes no more
than O(N logN) time. Unfortunately, the very friendly solvers like cvx or cvxpy do not easily
adapt to implicit operators like B, so we will use a first-order method. Before we do that,
we will change to a slightly more amenable model. Find a scalar λ such that, for our specific
choice of y and ε, Eq. 1 gives the same solution as solving

min
x
‖x‖1 + λ‖B · x− y‖2

2. (2)

To do this, ask cvx or cvxpy for a dual variable (that is, a Lagrange multiplier). You should
verify, using cvx or cvxpy, that (1) and (2) really do give the same answer (up to at least 4
or 5 decimal places). You should still be using the explicit matrix B. Hint: you may need to
reformulate the constraint in Eq. (1) to be ‖B · x− y‖2

2 ≤ ε2.

2



Problem 4: Rewrite our model as
min

x
τ‖x‖1︸ ︷︷ ︸

g

+ 1
2‖Bx− y‖

2
2︸ ︷︷ ︸

f

. (3)

using τ = 1/(2λ).

First-order solvers will need to know how to compute f(x) and ∇f(x) def= B∗(Bx− y). Thus
for the gradient, we need a function to compute the adjoint B∗. Write a function that computes
B∗, and provide evidence that your function is correct. If you would like step-by-step help, try
the following steps:
First we will write our own convolution with h. An efficient manner to compute the con-

volution, and one which is amenable to finding the adjoint, is by writing the convolution in
the Fourier domain. Let F represent the Discrete Fourier Transform (DFT/FFT), with F−1

the inverse Fourier Transform. Note that F∗ = F−1 up to a scaling factor, depending on the
convention (which, in the calculation below, will cancel out). Then the circular convolution is
x 7→ F−1(ĥ. ∗F(x)) where ĥ = F(h) (where we zero-pad h to make it length N), and the “.∗”
operation represents element-wise multiplication. Writing H : z 7→ ĥ. ∗ z, then the circular
convolution is

B = F−1 ◦ H ◦ F .

Despite looking complicated, this is actually very useful, as now the adjoint is simple to
compute, using the identity (AB)∗ = B∗A∗:

B∗ = F∗ ◦ H∗ ◦ F−∗.

For each component (e.g., H), write a function to compute its adjoint, and verify that it is
correct (see below). Once this is done, compose all the components together, and you have the
adjoint.

The adjoint of H : z 7→ ĥ. ∗ z is H∗ : z 7→ ĥ. ∗ z where the · denotes complex-conjugate.
To provide evidence your adjoint B∗ is correct, here are two possible methods: use your

implicit2explict method to use B∗ and build B∗, and then verify that B∗ really is the
adjoint of B (where B is the explicit matrix built from B); or, for several random choices of
x and y, verify 〈Bx, y〉 = 〈x,B∗y〉 up to high precision (e.g., 8 decimal places or more). You
may wish to write a test_adjoint function that automates one of these tests, as this will be
useful for future assignments.

Problem 5: Finally, download an existing `1 first-order solver and solve Eq. (3). In Matlab, recommended
packages are the `1 solvers by Mark Schmidt (e.g., his L1General package, also, his thesis
package; in particular, his `1 solver L1General2_PSSas — note that this expects τ to be a
vector, not a sclar); and FASTA by Tom Goldstein et al..
In Python, there are many packages, though I don’t have first-hand experience to recommend

them. The ProxImaL package (and see their paper) looks quite interesting, though certainly
overkill for our assignment; a basic proximal gradient method (last updated 2 years ago) is
apgpy (this is written by Brendan O’Donoghue, Stephen Boyd’s PhD student and also author
of cvxpy); some proxes (e.g., for `1) are in Samuel Vaiter’s package pyprox (last updated 2012);
and pyProxSolver by Jiayu Zhou (Asst. Prof at Michigan State).
Verify you get the same solution as obtained earlier.

Problem 6: [Optional, will not be graded] Compare the speed of the solvers in cvx/cvxpy with the
first-order solver as you increase the size of the problem (generate x and z in any fashion;
you can also solve (3) first, for a given λ of your choosing, and then set ε as the norm of the
residual).
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https://www.cs.ubc.ca/~schmidtm/Software/
http://www.cs.umd.edu/~tomg/projects/fasta/
https://github.com/comp-imaging/ProxImaL/
http://stanford.edu/~fheide/ProxImaL.pdf
https://github.com/bodono/apgpy
https://github.com/svaiter/pyprox
https://github.com/jiayuzhou/pyProxSolver


Problem 7: [Optional, will not be graded] Write the code for a 2D blur and its adjoint, and adapt your
implicit2explicit function to allow for this case. Note: most solvers only work correctly
with vector variables, but you can reshape your image into a vector, and just reshape it back
to a matrix inside your function. The adjoint of reshape-into-vector is reshape-into-matrix.
You can experiment with different forms of the filter h to recreate motion blurs, out-of-focus

blurs, etc.

Problem 8: [Optional, will not be graded] For the 1D blur, compare our results with a classical
denoising algorithm such as the Lucy-Richardson deconvolution algorithm (in Matlab, this is
deconvlucy in the Image Processing toolbox).

4


