1. (a) Consider the graph of $9x^2 + 25y^2 = 225$.

i. (4 pts.) Sketch the curve. Label x and y intercepts and foci.

ii. (3 pts.) The same curve can be defined by the parametric equations $x = a \sin \theta$ and $y = b \cos \theta$, $0 \leq \theta \leq 2\pi$. Find values for the constants a and b.

iii. (5 pts.) Use your answer for part (ii) to set up an expression for the length of the curve. Do not evaluate the expression.

Solution:

i. The equation can be written in standard form as $x^2/25 + y^2/9 = 1$, which corresponds to an ellipse with $a = 5$, $b = 3$, and $c = \sqrt{a^2 - b^2} = 4$. The intercepts are $(\pm 5, 0)$ and $(0, \pm 3)$, and the foci are at $(\pm 4, 0)$.

ii. The parametric equations $x = 5 \sin \theta$ and $y = 3 \cos \theta$ trace the ellipse beginning at $(0, 3)$, moving clockwise. (An alternate solution is $a = -5$, $b = -3$.)

iii. $L = \int_{0}^{2\pi} \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} \, d\theta = \int_{0}^{2\pi} \sqrt{(5 \cos \theta)^2 + (-3 \sin \theta)^2} \, d\theta$

(b) Let $r = 1 - \sin \theta$.

i. (6 pts.) Find the slope of the curve at $\theta = \pi$.

ii. (5 pts.) Set up but do not evaluate an expression for the length of the curve.

iii. (7 pts.) Find the area of the region that lies inside the curve and outside $r = 1$.

Solution:

i. $\frac{dy}{dx} \bigg|_{\theta=\pi} = \frac{\frac{d}{d\theta} (r \sin \theta)}{\frac{d}{d\theta} (r \cos \theta)} \bigg|_{\theta=\pi} = \frac{(1 - \sin \theta)(\cos \theta) + \sin \theta(-\cos \theta)}{(1 - \sin \theta)(-\sin \theta) + \cos \theta(-\cos \theta)} \bigg|_{\theta=\pi} = \frac{-1 + 0}{0 - 1} = 1$

ii. $L = \int \sqrt{r^2 + (dr/d\theta)^2} \, d\theta = \int_{0}^{2\pi} \sqrt{(1 - \sin \theta)^2 + (-\cos \theta)^2} \, d\theta$

iii.
\[A = \int \frac{1}{2} (r_1^2 - r_2^2) \, d\theta = \int_\pi^2 \frac{1}{2} ((1 - \sin \theta)^2 - 1^2) \, d\theta = \int_\pi^{2\pi} \frac{1}{2} (-2 \sin \theta + \sin^2 \theta) \, d\theta \\
= \int_\pi^{2\pi} \left(-\sin \theta + \frac{1}{4}(1 - \cos 2\theta) \right) \, d\theta = \left[\cos \theta + \frac{\theta}{4} - \frac{1}{8} \sin 2\theta \right]_\pi^{2\pi} \\
= \left(1 + \frac{\pi}{2} - 0 \right) - \left(-1 + \frac{\pi}{4} - 0 \right) = 2 + \frac{\pi}{4} \]

(c) (8 pts.) Match the graphs shown below to the following equations. No explanation is required.

(i) \(r = 1 + \cos \theta \) (ii) \(r = 2 \cos \frac{\theta}{3} \) (iii) \(r = \frac{1}{2} + \cos(3\theta) \) (iv) \(r = \sqrt{1 + \cos^2(4\theta)} \)

Solution: (i) a (ii) d (iii) b (iv) c

2. (a) Evaluate the following integrals.

i. (7 pts.) \(\int t \cos(2t) \, dt \) ii. (7 pts.) \(\int \tan^3 x \, dx \)

Solution:

i. Use integration by parts. Let \(u = t, dv = \cos(2t) \, dt \Rightarrow du = dt, v = \frac{1}{2} \sin(2t) \).

\[\int t \cos(2t) \, dt = \frac{1}{2} t \sin(2t) - \int \frac{1}{2} \sin(2t) \, dt = \frac{1}{2} t \sin(2t) + \frac{1}{4} \cos(2t) + C \]

ii.

\[\int \tan^3 x \, dx = \int (\tan^2 x) \tan x \, dx = \int (\sec^2 x - 1) \tan x \, dx \\
= \int \sec^2 x \tan x \, dx - \int \tan x \, dx \\
\]

In the first integral, let \(u = \sec x, du = \sec x \tan x \, dx \). (Alternatively let \(u = \tan x, du = \sec^2 x \, dx \).)

\[= \int u \, du - (\ln |\sec x| + C_1) = \frac{u^2}{2} - \ln |\sec x| + C \\
= \frac{1}{2} \sec^2 x - \ln |\sec x| + C \text{ or } \frac{1}{2} \tan^2 x + \ln |\cos x| + C \]

(b) Consider the function \(f(x) = \frac{4}{(x - 6)^3} \).

i. (7 pts.) Evaluate \(\int_{6}^{8} f(x) \, dx \).
ii. (5 pts.) What is the error in approximating $\int f(x) \, dx$ on $[8, 10]$ using the Midpoint Rule M_4?

iii. (4 pts.) Let $g(x) = \frac{4}{(x - 6)^3(3x^2 + 5)}$. Write the form of the partial fraction decomposition for $g(x)$ but do not solve for the numerical coefficients.

Solution:

i. This is an improper integral.

\[
\int_6^8 \frac{4}{(x - 6)^3} \, dx = \lim_{t \to 6^+} \int_t^8 \frac{4}{(x - 6)^3} \, dx = \lim_{t \to 6^+} \left[-2(x - 6)^{-2}\right]_t^8 = -2 \lim_{t \to 6^+} \left(\frac{1}{2^2} - \frac{1}{(t - 6)^2}\right) = \infty
\]

The integral is **divergent**.

ii. First find an upper bound for $|f''|$: $f(x) = 4(x - 6)^{-3} \Rightarrow f'(x) = -12(x - 6)^{-4} \Rightarrow f''(x) = 48(x - 6)^{-5}$. Since f'' is a decreasing function, the maximum value of $|f''|$ is $K = f''(8) = 48(2)^{-5}$.

\[
|E_M| \leq K(b - a)^3 \frac{2^n}{24n^2} = \frac{48}{2^5} \cdot \frac{(10 - 8)^3}{24(4^2)} = \frac{1}{32}
\]

iii. $g(x) = \frac{A}{x - 6} + \frac{B}{(x - 6)^2} + \frac{C}{(x - 6)^3} + \frac{Dx + E}{3x^2 + 5}$.

3. (a) Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-1)^n}{2^n3^n}$.

i. (6 pts.) Is $\{a_n\}$ monotonic? Is $\{a_n\}$ bounded?

ii. (6 pts.) Let S represent the sum of the series and let s_n represent the nth partial sum. Estimate the value of $|S - s_2|$ without finding S.

iii. (6 pts.) Now find the sum S of the series.

Solution:

i. a_n is an alternating sequence and therefore **not monotonic**. Since $|a_n| = 1/(2^n3^n)$ is decreasing as $n \to \infty$, the sequence $\{a_n\}$ is bounded by $a_1 = -1/6$ and above by $a_2 = 1/36$, and therefore **bounded**.

ii. By the Alternating Series Estimation Theorem, since $|a_n|$ is decreasing and $\lim_{n \to \infty} |a_n| = 0$, $|S - s_2| \leq |a_3| = \frac{1}{216}$.

iii. This is a geometric series with ratio $r = -1/6$ and first term $a = -1/6$ so the sum of the series is $S = \frac{a}{1 - r} = \frac{-1/6}{1 + 1/6} = \frac{1}{7}$.

(b) Are the following series absolutely convergent, conditionally convergent, or divergent?

i. (7 pts.) $\sum_{n=4}^{\infty} \frac{n}{\sqrt{n^3 - 1}}$

ii. (7 pts.) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{100^n}{n^n}$

Solution:
i. By the Direct Comparison Test, since \(\frac{n}{\sqrt{n^3 - 1}} > \frac{n}{\sqrt{n^3}} = \frac{1}{\sqrt{n}} \) and \(\sum \frac{1}{\sqrt{n}} \) is a divergent p-series with \(p = 1/2 < 1 \), the given series is \(\text{divergent} \).

Alternative Solution: Compare to the divergent p-series \(\sum \frac{1}{\sqrt{n}} \). By the Limit Comparison Test, since \(\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^3 - 1}} \cdot \frac{\sqrt{n^3}}{1} = \lim_{n \to \infty} \sqrt{\frac{n^3}{n^3 - 1}} = 1 \), the given series is also \(\text{divergent} \).

ii. By the Root Test, since \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{100}{n} = 0 \), the series is \(\text{absolutely convergent} \).

Alternative Solution: Use the Ratio Test.

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{100^{n+1}}{(n+1)^{n+1}} \cdot \frac{n^n}{100^n} \right| = \lim_{n \to \infty} \frac{100}{n+1} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{100}{e(n+1)} = 0
\]

since \(\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \frac{1}{e} \). Therefore the series is \(\text{absolutely convergent} \).

4. (a) Suppose \(g(x) \) equals the power series \(\sum_{n=2}^{\infty} \frac{(n+1)(x+b)^n}{c^{2n}} \), where \(b \) and \(c \) are constants, and the series has an interval of convergence of \(-6 < x < 2 \).

i. (3 pts.) Find the center and radius of convergence of the series.

ii. (4 pts.) Evaluate \(\int g(x) \, dx \) as a power series.

iii. (7 pts.) Given the interval of convergence, find possible values for \(b \) and \(c \). Justify your answer using appropriate test(s).

Solution:

i. The interval \(-6 < x < 2 \) corresponds to the interval \(|x-a| < R \) with center \(a = -2 \) and radius \(R = 4 \).

ii. \(\int g(x) \, dx = \int \sum_{n=2}^{\infty} \frac{(n+1)(x+b)^n}{c^{2n}} \, dx = C + \sum_{n=2}^{\infty} \frac{(n+1)(x+b)^{n+1}}{c^{2n}n+1} = C + \sum_{n=2}^{\infty} \frac{(x+b)^{n+1}}{c^{2n}} \)

iii. A power series \(\sum c_n(x-a)^n \) converges for \(|x-a| < R \). Since the center of the given series is \(a = -2 \), the constant \(b = 2 \). Apply the Ratio Test to find the constant \(c \).

\[
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+2)(x+2)^{n+1}}{c^{2n+2}} \cdot \frac{c^{2n}}{(n+1)(x+2)^n} \right| = \lim_{n \to \infty} \frac{n+2}{n+1} \cdot \frac{x+2}{c^2} = \left| \frac{x+2}{c^2} \right| < 1 \Rightarrow |x+2| < c^2.
\]

This interval corresponds to \(|x-a| < R \) so \(c^2 = R = 4 \) \(\Rightarrow c = 2 \) or \(-2 \) for absolute convergence.

At the endpoints of the interval, \(x = -6 \) and \(x = 2 \), the power series is divergent because both series \(\sum (-n+1) \) and \(\sum (n+1) \) diverge by the Test for Divergence.

(b) (5 pts.) Use series to evaluate \(\lim_{x \to 0} \frac{e^{2x} - 1 - 2x - 2x^2}{8x^3} \).
1. Consider the region bounded by
 \(m \) and \(M \).
 \((b) \) (6 pts.) Masses
 \((c) \) (6 pts.) Solve the initial value problem
 \((c) \) (7 pts.) Find
 \(\int \)
 \(f \) is \(f^{(n)}(x) = \frac{(-1)^n n!}{(x+3)^{n+1}} \) for \(n = 1, 2, \ldots, x \neq -3. \)
 \(T_2(x) = \frac{1}{4} + \frac{f'(1)}{1!} (x-1) + \frac{f''(1)}{2!} (x-1)^2 = \frac{1}{4} - \frac{1}{16} (x-1) + \frac{1}{64} (x-1)^2 \)

5. (a) Consider the region bounded by \(x = 1 - y^2 \) and \(x = 0. \)
 \(i. \) (6 pts.) Set up but do not evaluate an expression for the volume of the solid obtained by rotating the region about the line \(y = -2. \)
 \(ii. \) (6 pts.) Set up but do not evaluate an expression for the surface area obtained by rotating \(x = 1 - y^2 \) about the \(x \)-axis, \(0 \leq y \leq 1. \)
 \(\text{Solution: Note that the curve can be expressed as } y = \pm \sqrt{1-x}, 0 \leq x \leq 1. \)
 \(\text{i. Shell Method: } V = \int_{-1}^{1} 2\pi rh \ dy = \int_{-1}^{1} 2\pi (y+2) (1-y^2) \ dy \)
 \(\text{Washer Method: } V = \int_{0}^{1} \pi (R^2 - r^2) \ dx = \int_{0}^{1} \pi ((\sqrt{1-x}+2)^2 - (\sqrt{1-x}+2)^2) \ dx \)
 \(\text{ii. } S = \int_{0}^{1} 2\pi r \ ds \text{ where } ds = \sqrt{1+(dy/dx)^2} \ dx \text{ or } ds = \sqrt{1+(dx/dy)^2} \ dy \)
 \(S = \int_{0}^{1} 2\pi y \sqrt{1+4y^2} \ dy \text{ or } \int_{0}^{1} 2\pi \sqrt{1-x} \sqrt{1+\frac{1}{4(1-x)}} \ dx \)

(b) (6 pts.) Masses \(m_1 = 4, m_2 = 1, m_3 = 5 \) are located at the points \(P_1(3, 1), P_2(-2, 0), P_3(0, -4) \), respectively. Find the moments \(M_x \) and \(M_y \) and the center of mass of the system.
 \(\text{Solution: } M_x = \sum m_i y_i = 4(1) + 1(0) + 5(-4) = -16 \)
 \(M_y = \sum m_i x_i = 4(3) + 1(-2) + 5(0) = 10 \)
 \(m = \sum m_i = 4 + 1 + 5 = 10 \)
 \((\bar{x}, \bar{y}) = (M_y/m, M_x/m) = (10/10, -16/10) = (1, -8/5) \)

(c) (6 pts.) Solve the initial value problem \(y' = 2x \sqrt{1-y^2}, \ y(0) = \frac{1}{2}. \)
 \(\text{Solution: } \)
 \(\frac{dy}{dx} = 2x \sqrt{1-y^2} \)
 \(\int \frac{dy}{\sqrt{1-y^2}} = \int 2x \ dx \)
 \(\sin^{-1} y = x^2 + C \text{ for } |x^2 + C| \leq \frac{\pi}{2} \)
Now use the initial value to find C.

\[
\sin^{-1} \frac{1}{2} = 0 + C \Rightarrow C = \frac{\pi}{6}
\]

\[
\sin^{-1} y = x^2 + \frac{\pi}{6}
\]

\[
y = \sin \left(x^2 + \frac{\pi}{6} \right) \quad \text{for} \quad |x| \leq \sqrt{\frac{\pi}{3}}.
\]