1. Evaluate the following integrals. Show all work to justify your answer and make sure to simplify as much as possible.

(a) (6 pts) \(\int \frac{x + 2}{\sqrt{x^2 + 4}} \, dx \)

(b) (6 pts) \(\int \frac{\sinh x}{e^x} \, dx \)

(c) (6 pts) If \(f \) is continuous and \(\int_{0}^{9} f(x) \, dx = 4 \), find \(\int_{0}^{3} xf(x^2) \, dx \).

2. Find \(\frac{dy}{dx} \) for the following. Show all work to justify your answer and make sure to simplify as much as possible.

(a) (6 pts) \(y = (\sin x)^x \)

(b) (6 pts) \(ye^{x^2} = \cos^{-1}(e^y) \)

(c) (6 pts) \(y = \int_{e}^{e^x} t^{\ln t} \, dt \)

3. Answer the following.

Given \(f(x) = \frac{e^x}{x} \) with, \(f'(x) = \frac{e^x(x - 1)}{x^2} \) and, \(f''(x) = \frac{e^x(x^2 - 2x + 2)}{x^3} \), find the following for \(f \).

Make sure to state any rules or theorems you utilize.

(a) (3 pts) State the domain of \(f \).

(b) (8 pts) Find all asymptote(s) for \(f \). Justify your answer(s) using the appropriate limits.

(c) (5 pts) Find the intervals of increase and decrease for the function \(f \). Justify your answer(s).

(d) (5 pts) Find the local maximum and minimum values for the function \(f \). Justify your answer(s).

(e) (6 pts) Find the intervals of concavity and the inflection points for the function \(f \). Justify your answer(s).

(f) (7 pts) Use parts (a) - (e) to sketch the graph of \(f \). LABEL the asymptote(s), maximum(s), minimum(s), and inflection point(s) on your graph.

TWO MORE ON THE OTHER SIDE
4. (12 pts) Sketch a function \(y = f(x) \) that satisfies **all** of the following conditions. No explanation is necessary. Clearly label all important features of the graph.

(a) \(f(-x) = -f(x) \)
(b) \(f(-1) = 1 \)
(c) \(\lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} > 0 \)
(d) \(\lim_{x \to -\infty} f(x) = 2 \)
(e) \(\lim_{x \to -1} f(x) = 3 \)

5. Some unrelated questions:

(a) (6 pts) Find the linearization of \(f(x) = \sqrt{1 - x} \) at \(a = -3 \) and use the linearization to approximate \(\sqrt{5} \). Show all work to justify your answer and make sure to simplify as much as possible.

(b) (6 pts) Suppose a rectangle is entirely contained in the first quadrant of the \(xy \)-plane. The rectangle borders the \(x \)-axis and \(y \)-axis and its upper right corner touches the curve \(y = \frac{2}{x} \). What dimensions minimize the perimeter of the rectangle? Show all work to justify your answer and make sure to simplify as much as possible.

(c) (6 pts) **True** or **False**: \(\int_{-1}^{1} \frac{\sin x}{1 + x^2} \, dx = 0 \). Justify your answer for full credit.