1. (22 points) The velocity function (in meters/second) for a particle moving along a line is \(v(t) = 8 - t^3 \). For the interval \(0 \leq t \leq 4 \), evaluate the following:

(a) the general indefinite integral of \(v(t) \),
(b) the definite integral of \(v(t) \),
(c) the definite integral of \(|v(t)| \),
(d) the average value of \(v(t) \),
(e) the value of \(c \) that satisfies the Mean Value Theorem for Integrals,
(f) the displacement of the particle,
(g) the distance traveled by the particle.

Solution:

(a) \[\int v(t) \, dt = \int (8 - t^3) \, dt = 8t - \frac{t^4}{4} + C \]

(b) \[\int_0^4 v(t) \, dt = \int_0^4 (8 - t^3) \, dt = 8t - \frac{t^4}{4} \bigg|_0^4 = 8(4) - 64 - 0 = 32 - 64 = -32 \]

(c) First determine that \(v(t) = 8 - t^3 = 0 \) at \(t = 2 \).

\[\int_0^4 |v(t)| \, dt = \left| \int_0^2 (8 - t^3) \, dt \right| + \left| \int_2^4 (8 - t^3) \, dt \right| \\
= \left| 8t - \frac{t^4}{4} \bigg|_0^2 \right| + \left| 8t - \frac{t^4}{4} \bigg|_2^4 \right| \\
= \left| 8(2) - 4 - 0 \right| + \left| 8(4) - 64 - (8(2) - 4) \right| \\
= 12 + |32 - 12| = 12 + 44 = 56 \]

(d) From part (b) we know that \(\int_0^4 v(t) \, dt = -32 \). Then

\[v_{\text{ave}} = \frac{1}{4 - 0} \int_0^4 v(t) \, dt = \frac{1}{4}(-32) = -8 \]

(e) The Mean Value Theorem states that there is a \(c \) in \([0, 4]\) such that

\[v(c) = v_{\text{ave}} \]

\[8 - c^3 = -8 \]

\[c^3 = 16 \]

\[c = \sqrt[3]{16} = 2\sqrt[3]{2} \]

(f) The displacement equals \(\int_0^4 v(t) \, dt = -32 \) (from part (b)).

(g) The distance traveled equals \(\int_0^4 |v(t)| \, dt = 56 \) (from part (c)).

2. (36 points) Evaluate the following integrals.

(a) \[\int (\sin x) \sec^2 (\cos x) \, dx \]

(b) \[\int_0^9 \left(\sqrt{81 - x^2} - 4x \right) \, dx \]

(c) \[\int 3t^3 \sqrt{t^2 - 3} \, dt \]

(d) \[\int_0^{\pi/4} \theta \sec^2 (\theta^2) \tan (\theta^2) \, d\theta \]

Solution:

(a) (Substitution Rule) Let \(u = \cos x \), so \(du = -\sin x \, dx \). Thus,

\[\int (\sin x) \sec^2 (\cos x) \, dx = - \int \sec^2 (\cos x) (-\sin x) \, dx \]

\[= - \int \sec^2 u \, du \]
\[
\int_0^9 \left(\sqrt{81 - x^2} - 4 \sqrt{x} \right) \, dx = \int_0^9 \sqrt{81 - x^2} \, dx - \int_0^9 4x^{1/2} \, dx
\]
\[
= \frac{1}{4} \left(\pi \left(9^2 \right) \right) - \left[4 \cdot \frac{2}{3} x^{3/2} \right]_0^9
\]
\[
= \frac{81\pi}{4} - \frac{8}{3} \left(9^{3/2} - 0 \right)
\]
\[
= \frac{81\pi}{4} - \frac{8}{3} (27) = \frac{81\pi}{4} - 72
\]

(c) (Substitution Rule) Let \(u = t^2 - 3 \), so \(du = 2t \, dt \) and \(t^2 = u + 3 \). Thus,
\[
\int 3t^3 \sqrt{t^2 - 3} \, dt = \frac{3}{2} \int t^2 \sqrt{t^2 - 3} - 3 (2t) \, dt
\]
\[
= \frac{3}{2} \int (u + 3)u^{1/3} \, du
\]
\[
= \frac{3}{2} \left[u^{4/3} + 3u^{1/3} \right] \, du
\]
\[
= \frac{3}{2} \left[\frac{3}{7} u^{7/3} + 3 \cdot \frac{3}{4} u^{1/3} \right] + C
\]
\[
= \frac{9}{14} u^{7/3} + \frac{27}{8} u^{1/3} + C
\]
\[
= \frac{9}{14} (t^2 - 3)^{7/3} + \frac{27}{8} (t^2 - 3)^{1/3} + C
\]

(d) (Substitution Rule) Let \(u = \tan(\theta^2) \), so \(du = 2\theta \sec^2(\theta^2) \, d\theta \) (chain rule). The limits are then \(u(\sqrt{\pi/4}) = \tan(\pi/4) = 1 \), \(u(0) = \tan(0) = 0 \). Thus,
\[
\int_{\sqrt{\pi/4}}^{\pi/4} \theta \sec^2(\theta^2) \tan(\theta^2) \, d\theta = \frac{1}{2} \int_{\sqrt{\pi/4}}^{\pi/4} \tan(\theta^2)(2\theta) \sec^2(\theta^2) \, d\theta
\]

Alternate solution: Let \(u = \sec(\theta^2) \), so \(du = 2\theta \sec(\theta^2) \tan(\theta^2) \, d\theta \). The limits are then \(u(\sqrt{\pi/4}) = \sec(\pi/4) = \sqrt{2} \), \(u(0) = \sec(0) = 1 \). Thus,
\[
\int_{\sqrt{\pi/4}}^{\pi/4} \theta \sec^2(\theta^2) \tan(\theta^2) \, d\theta = \frac{1}{2} \int_{\sqrt{\pi/4}}^{\pi/4} \sec(\theta^2)(2\theta) \sec(\theta^2) \tan(\theta^2) \, d\theta
\]
\[
= \frac{1}{2} \int_{\sqrt{2}}^{\sqrt{\pi/4}} u \, du = \frac{1}{2} \left[\frac{1}{2} u^2 \right]_{\sqrt{2}}^{\sqrt{\pi/4}}
\]
\[
= \frac{1}{4} \int_{2}^{1} |2 - 1| = \frac{1}{4}
\]

3. (15 points) Let \(g(x) = \frac{2}{x^3 - 6} \) for \(x > \sqrt{6} \).

(a) Show that \(g \) is one-to-one and thus invertible.
(b) Use \(g' \) to find \((g^{-1})' \) (1). (Find the value without finding \(g^{-1} \)).
(c) Find \(g^{-1}(x) \).
(d) What are the domain and range of \(g^{-1} \)?

Solution:

(a) \(g'(x) = \frac{-2(3x^2)}{(x^3 - 6)^2} = \frac{-6x^2}{(x^3 - 6)^2} < 0 \) for all values of \(x \) for which \(g(x) \) is defined. Since it is always decreasing the function is one-to-one.

(b) First, we find \(g^{-1}(1) \):
\[
x^3 - 6 = 2
\]
\[
x = \sqrt[3]{8} = 2
\]

Alternate solution: Let \(u = \sec(\theta^2) \), so \(du = 2\theta \sec(\theta^2) \tan(\theta^2) \, d\theta \). The limits are then \(u(\sqrt{\pi/4}) = \sec(\pi/4) = \sqrt{2} \), \(u(0) = \sec(0) = 1 \). Thus,
\[
\int_{\sqrt{\pi/4}}^{\pi/4} \theta \sec^2(\theta^2) \tan(\theta^2) \, d\theta = \frac{1}{2} \int_{\sqrt{\pi/4}}^{\pi/4} \sec(\theta^2)(2\theta) \sec(\theta^2) \tan(\theta^2) \, d\theta
\]
\[
= \frac{1}{2} \int_{\sqrt{2}}^{\sqrt{\pi/4}} u \, du = \frac{1}{2} \left[\frac{1}{2} u^2 \right]_{\sqrt{2}}^{\sqrt{\pi/4}}
\]
\[
= \frac{1}{4} \int_{2}^{1} |2 - 1| = \frac{1}{4}
\]
\[x^3 = 8 \]
\[x = 2. \]

So \(g^{-1}(1) = 2. \)

\[
(g^{-1})'(1) = \frac{1}{g'(g^{-1}(1))} = \frac{1}{g'(2)}
= \frac{1}{-6(2^2)} = \frac{1}{-6(4)}
= \frac{4}{-24} = \frac{-1}{6}.
\]

(c) To find \(g^{-1}(x) \):

\[
y = \frac{2}{x^3 - 6}
\]
\[
g(x^3 - 6) = 2
\]
\[
(x^3)y = 2 + 6y
\]
\[
x = \frac{3}{2}y + 6
\]
\[
g^{-1}(x) = \sqrt[3]{\frac{2}{x} + 6}.
\]

(d) The domain of \(g^{-1} \) is the range of \(g \): \((0, \infty)\). The range of \(g^{-1} \) is the domain of \(g \): \((\sqrt{6}, \infty)\).

4. (15 points) Consider the function \(f(t) = \frac{\cos t}{t} \), shown below, and the function

\[
g(x) = \int_{\frac{\pi}{2}}^{x} f(t) \, dt, \quad \frac{\pi}{2} \leq x \leq 4\pi.
\]

(a) Find \(g'(x) \) and \(g'(2\pi) \).
(b) On which interval(s) is \(g \) decreasing?
(c) At what value(s) of \(x \) do the local minimum values of \(g \) occur?
(d) Where does \(g \) attain its absolute minimum value?
(e) Does \(g \) have an inflection point at \(x = \frac{3\pi}{2} \)? Explain.

\[
f(t) = \frac{\cos t}{t}
\]

\[
\begin{align*}
4 & \quad \pi & \quad \frac{5\pi}{2} & \quad \frac{7\pi}{2} & \quad 4\pi \\
\end{align*}
\]

Solution:

(a) \(g'(x) = \frac{\cos x}{x} \) by FTC-I.
\[
g'(2\pi) = \frac{\cos 2\pi}{2\pi} = \frac{1}{2\pi}
\]

(b) \(g \) is decreasing when \(f < 0 \) on \(\left(\frac{\pi}{2}, \frac{3\pi}{2} \right), \left(\frac{5\pi}{2}, \frac{7\pi}{2} \right) \).

(c) \(g \) has local minimum values when \(g \) changes from decreasing to increasing at \(x = \frac{3\pi}{2}, \frac{7\pi}{2} \).

(d) We check the critical numbers of \(g \) at \(x = \frac{3\pi}{2}, \frac{7\pi}{2} \) and the endpoints of the interval at \(x = \frac{\pi}{2}, 4\pi \). The absolute minimum value of \(g \) occurs at \(x = \frac{3\pi}{2} \).
Since \(g'' = f' \), we examine the slope of \(f \) and find that \(g'' \left(\frac{3\pi}{2} \right) = f' \left(\frac{3\pi}{2} \right) > 0 \) so \(g \) is concave up there and has no inflection point at \(x = \frac{3\pi}{2} \).

5. (12 points)

(a) If \(g \) is continuous on \([-3, 3]\) and \(\int_{-3}^{-1} g(x) \, dx = -2 \) and \(\int_{0}^{3} g(x) \, dx = 4 \), find the value of \(\int_{-1}^{0} g(x) \, dx \) for the following cases:
 i. \(g \) is even,
 ii. \(g \) is odd,
 iii. the average value of \(g \) on \([-3, 3]\) is \(-1\).

(b) A comparison property of the integral states that if \(m \leq f(x) \leq M \) for \(a \leq x \leq b \), then

\[
 m(b - a) \leq \int_{a}^{b} f(x) \, dx \leq M(b - a).
\]

Use this property to find the values of \(L \) and \(U \) if

\[
 L \leq \int_{-\pi}^{\pi} \left(\sin^4 x + 2 \sin^2 x \right) \, dx \leq U.
\]

Solution:

(a) i. If \(g \) is even, then \(\int_{-a}^{0} g(x) \, dx = \int_{0}^{a} g(x) \, dx. \)

\[
 \int_{-3}^{-1} g(x) \, dx = \int_{0}^{3} g(x) \, dx = 4
 \int_{-3}^{-1} g(x) \, dx + \int_{0}^{3} g(x) \, dx = 4
\]

(b) We find the minimum and maximum values of \(f(x) = \sin^4 x + 2 \sin^2 x \) on \([-\pi, \pi]\). Since \(-1 \leq \sin x \leq 1\), then

\[
 0 \leq \sin^2 x \leq 1,
\]
$0 \leq \sin^4 x \leq 1$.

It follows that the minimum value of f is $m = 0$ and the maximum value of f is $M = 1 + 2(1) = 3$. Then

\begin{align*}
L &= m(b - a) = 0 \\
U &= M(b - a) = 3(\pi - (-\pi)) = 6\pi.
\end{align*}