1. **(25 POINTS)** The position of a particle is given by \(s(t) = t^3 - 12t^2 + 36t \), where \(t \geq 0 \) is measured in seconds and \(s \) is measured in feet. Include units in your answers where appropriate.

(a) Find the velocity at time \(t \).
(b) What is the velocity after 3 seconds?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled by the particle during the first 5 seconds.
(f) When is the acceleration zero?

2. **(20 POINTS)** Consider the curve with equation \(y^2 = x^3 + 3x^2 \). You must use implicit differentiation to solve this problem.

(a) Find an equation of the tangent line to this curve at the point \((-1, 2)\). Write your answer in the form \(y = mx + b \).
(b) Find \(y'' \).
(c) At what points does this curve have a horizontal tangent line?

3. **(10 POINTS)** Find \(\frac{dy}{dx} \) given the curve \(\sin(x + y) = y^2 \cos(x) \).

4. **(25 POINTS)** A man stands at point \(A \). A spotlight sits at point \(B \), 20 ft south of point \(A \), and is shining on the man. The man walks east along a straight path at a speed of 4 ft/s, and the spotlight rotates so that it keeps shining on the man. At what rate is the spotlight rotating when the man is 15 ft from point \(A \)? Include a picture in your solution and include units in your answer.

5. **(20 POINTS)** A table of values for \(f \), \(g \), \(f' \) and \(g' \) is given. Please answer the questions below. Simplify your answers as far as possible and show every step.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(g(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

(a) If \(h(x) = f(x)g(x) \), find \(h'(3) \)
(b) If \(H(x) = \sqrt{7 + 2f(x)} \), find \(H'(2) \)
(c) If \(R(x) = \frac{x^2}{g(x)} \), find \(\frac{dR}{dx} \bigg|_{x=2} \)
(d) If \(F(x) = g(\sqrt{x}) \), find \(F'(1) \)