1. (12 points) Match the graphs of the functions in Figure 1 to the graphs of their derivatives in Figure 2. No explanation is necessary.

![Figure 1: Functions](image1)

![Figure 2: Derivatives](image2)

2. (20 points)

 (a) Let \(y = \tan^3 x + \tan (3x) \). Find \(y'(\pi/4) \).

 (b) Find all values of \(\theta \) in the interval \([0, 2\pi]\) that satisfy \(2 \cos^2 \theta = 1 + \cos \theta \).
3. (30 points) Let \(f(x) = \sqrt{x - 4} \).

(a) Find the domain and range of \(f \). Express your answer in interval notation.
(b) Use the definition of derivative to find \(f' \).
(c) Find the point(s) on the curve \(y = f(x) \) where the tangent line is parallel to the line \(x - 5y + 15 = 0 \).
(d) Find the value(s) of \(c \) on the interval \([4, 29]\) that satisfy the conclusion of the Mean Value Theorem for the function \(f \).

4. (12 points)

\[f(t) = 12t \csc(3t) \quad \text{and} \quad g(t) = \begin{cases} f(t) & t \neq 0 \\ 0 & t = 0 \end{cases} \]

(a) Find \(\lim_{t \to 0} f(t) \).
(b) Is \(g \) continuous at \(t = 0 \)? Justify your answer using the definition of continuity.

5. (14 points) Use implicit differentiation to find the tangent slope of \(\sin \left(\frac{x}{y} \right) = \frac{1}{y} + 1 \) at \((0, -1)\).

6. (30 points) Let \(g(x) = \frac{\sqrt{x} - 1}{\sqrt{x^2}} \).

(a) Find \(g' \).
(b) Find an equation of the line tangent to \(y = g(x) \) at \(x = 1 \).
(c) Find the critical numbers of \(g \).
(d) What is the linearization of \(g \) at \(a = 1 \)?
(e) Use the linearization to estimate the value of \((0.97)^{1/3} - (0.97)^{-2/3}\).
(f) Is \(g \) even, odd, or neither?

7. (14 points) A 15-ft ladder is leaning against a wall when its base starts to slide away. By the time the base of the ladder is 12 ft from the wall, the base is moving at the rate of 2 ft/sec. How fast is the angle between the ladder and the ground changing then?

8. (18 points) No explanation is necessary for the following problems.

(a) Sketch the graph of a single function \(f \) that satisfies all of the following conditions.
\(f \) is continuous and odd
\(\lim_{x \to \infty} f(x) = -4 \)
\(f'(-2) \) is undefined
\(\lim_{h \to 0} \frac{f(h) - f(0)}{h} = -4 \)

(b) Sketch the graph of a single function \(g \) that satisfies all of the following conditions.
\(g \) is even
\(\lim_{x \to 1^+} g(x) = \infty \)
\(g' < 0 \) on \((0, 1)\)
\(\lim_{x \to 2} g(x) = -3 \)
\(g(2) = 1 \)