Name ____________________________

You will return this exam page with your bluebook upon completion of the exam but only work done in your bluebook will be graded.

APPM 1235 Exam 3
November 19, 2014

• Textbooks, class notes, drones and electronic devices of any kind are NOT permitted.
• If you leave the exam room, you will not be allowed back in and your exam will be concluded.

Box your final answers for each question.

• Begin each numbered problem on a blank, right-side page of your bluebook. All problems should be clearly numbered and in order.

For problems #1 - #5, show your work. Fully simplify all solutions. Unless otherwise indicated, leave your answers in terms of π as necessary.

1. [18 points] Find the exact value of the following. If the value is not defined, state "undefined."

 (a) $\sin^{-1}\left(\frac{-\sqrt{2}}{2}\right)$
 (b) $\tan^{-1}\left(\tan\frac{2\pi}{3}\right)$
 (c) $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$

 (d) $\sin^2\left(\sin^{-1}\left(\frac{-\sqrt{2}}{2}\right)\right)$
 (e) $\cot\left(\cos^{-1}\pi\right)$
 (f) $\tan\left(\cos^{-1}\frac{5}{13}\right)$

2. [10 points] A CU student gets around campus in a human hamster wheel. The wheel has a diameter of 2 meters. The student travels at a rate of 3 revolutions every 12 seconds.

 (a) How fast does the hamster wheel travel in meters per second?

 (b) The student lives in Baker Hall and has a class in Fleming. If the distance from Baker Hall to Fleming is 240π meters, how many minutes does it take for the student to get from his dorm to his class?

3. [25 points] Consider the graph shown below. It shows the hours of daylight s as function of time t in months for 4 different cities. (Note that the equinox and solstice events are spaced exactly 3 months apart.)

 (a) Let Sept 23 (the first Fall equinox) correspond to $t = 0$. What is s at $t = 0$ for each city?

 (b) What is the period for each city?

 (c) What is the amplitude for Juneau?

 (d) Find a sine function that describes the graph for Juneau. Call this function $s(t)$.

 (e) What is the height of the Juneau wave (that is, the difference between the crest and the trough of the wave)?

Extra credit (2 points): Which city has the most average hours of daylight?
4. [15 points] Find angles A, B, C and D and side x in the figure shown below. This figure is not to scale; do not assume any angle values that are not given.

Figure for problem #4

5. [20 points] In order to construct a new highway sign, you are tasked with inscribing a hexagon within a circular sign. The area on the sign outside of the hexagon will be painted black. A concept of the sign is shown above. The sign is to have a radius of 5 inches. Answer the following questions to determine how much black paint will be needed per sign.

(a) Find θ.

(b) Find the area of one of the triangles.

(c) Find the area of the hexagon.

(d) Find the area of the black paint.

6. [12 points] Match the correct equations to each graph. There are two correct equations for each graph. Two equations are not used.

Graph #1

A. $y = -\cot(x + \pi)$

B. $y = -\cos\left(\frac{1}{2} x\right)$

C. $y = -\sin\left(2x - \frac{\pi}{2}\right)$

D. $y = \tan\left(x + \frac{\pi}{2}\right)$

E. $y = -\cos(2x + \pi)$

F. $y = \sin\left(\frac{1}{2} x - \frac{\pi}{2}\right)$

G. $y = \cot(-x + \pi)$

H. $y = -\sin\left(2x - \frac{\pi}{4}\right)$

END OF EXAM

Make sure your name is at the top of the page on the front side, then put this exam page inside your bluebook and make sure it is returned with your bluebook.