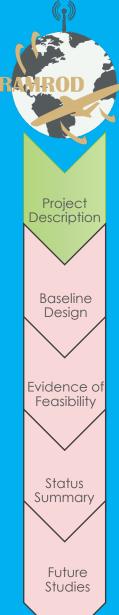
<u>REMOTE AUTONOMOUS MAPPING OF RADIO FREQUENCY</u> <u>OBSTRUCTION DEVICES</u>

Team: Jorgen Baertsch, Ian Cooke, Kennedy Harrmann, Mary Landis, Sarah Larson, Harrision Mast, Ethan Morgan, Selby Stout, Jake Ursetta, Justin Williams, Samantha Williams Sponsor: Dennis Akos Advisor: Jade Morton

MISSION STATEMENT


<u>RAMROD</u> will utilize an autonomous UAS and self-contained sensor payload to localize Radio Frequency Interference and Emerging Threat sources in a GPS-denied environment to allow civilian and military GNSS endeavors to continue without disruption.

AGENDA

- . Project Description
 - a. Critical Project Elements
 - b. Functional Requirements
- c. Concept of Operations (CONOPS)
- d. Functional Block Diagram
- 2. Baseline Design
 - a. UAS Baseline Design
 - b. Localization and Flight Algorithm Baseline Design
 - c. Operational Payload Baseline Design
- 3. Evidence of Feasibility
 - a. UAS Endurance, weight, and power
 - b. Localization
 - c. Inertial Navigation System
- 4. Status Summary
 - a. Schedule
 - b. Budget
- 5. Future Studies

ACRONYMS

Acronym:	Meaning:
AGC	Automatic Gain Control
ET	Emerging Threat
FAA	Federal Aviation Administration
GNC	Guidance Navigation and Control
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
MCU	Microcontroller
PDOA	Power Difference of Arrival
PPD	Personal Privacy Device
RFI	Radio Frequency Interference
UAS	Unmanned Aerial System

BACKGROUND

- Personal Privacy Devices and Emerging Threat Devices (spoofers) are becoming a more common issue in military and commercial settings
- Utilizing a UAS is the most efficient method for localizing these RFI sources
- Flying a UAS in GPS denied conditions is problematic due to most autopilots reliance on GPS

CRITICAL PROJECT ELEMENTS

	CPE	Description	Solution		
Project Description Baseline Design	Algorithm	Maintain autonomous flight while in a simulated GPS denied environment for an extended period of time	Use PDOA to determine GPS denied conditions and use an Inertial Navigation System to estimate UAS location and orientation		
Evidence of Feasibility Status Summary	UAS	Develop a UAS platform capable of maintaining flight in a GPS denied environment while supporting all RFI measuring equipment	Choose and modify a UAS platform that can maintain flight for at least 60 minutes		
Future Studies	Payload	Self-powered sensor payload that can monitor, store and transmit RFI signal data while interfaced with the UAS platform	Rigid structure containing RFI measuring equipment that will fit inside the payload bay of the UAS		

FUNCTIONAL REQUIREMENTS – PT. 1

Project Description

> Baseline Design

Evidence of Feasibility

Status Summary

> Future Studies

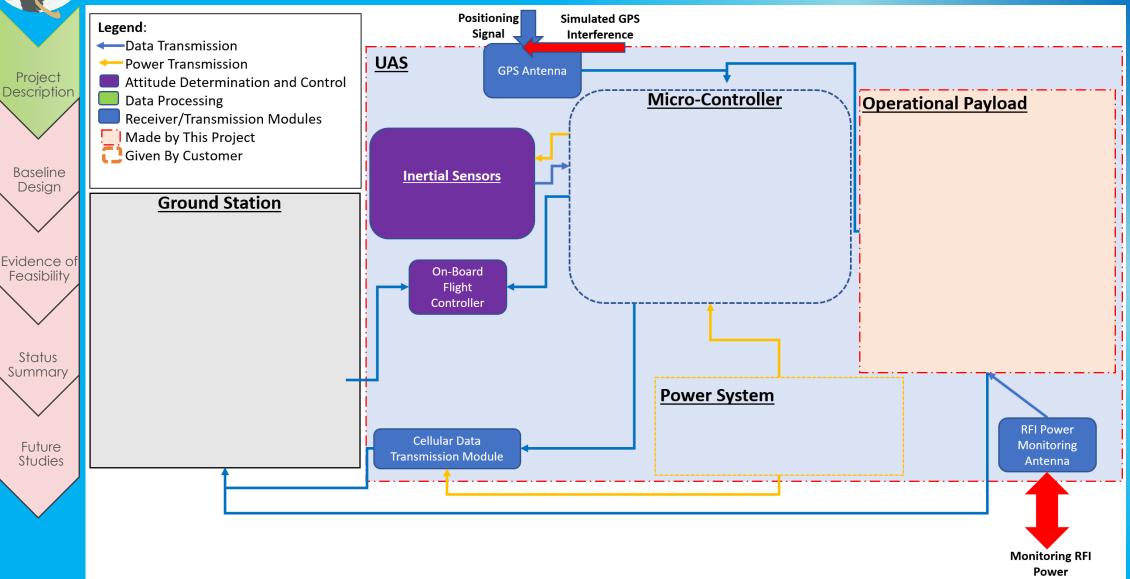
Functional Requirement	Description	
FR 1.0	The UAS shall have a flight time of 60 minutes	
FR 2.0	The UAS shall fly in maximum winds of 30km/hr	
FR 3.0	The UAS shall fly in a GPS denied environment for a distance of up to 2 km and a time of 200 seconds	
FR 4.0	The UAS shall support all flight hardware and instrumentation	
FR 5.0	The UAS and its testing shall adhere to FAA and CU Boulder regulations	
FR 6.0	The UAS shall be capable of flying the operational payload	
FR 7.0	The system shall fly autonomously given a pre-programmed flight plan	

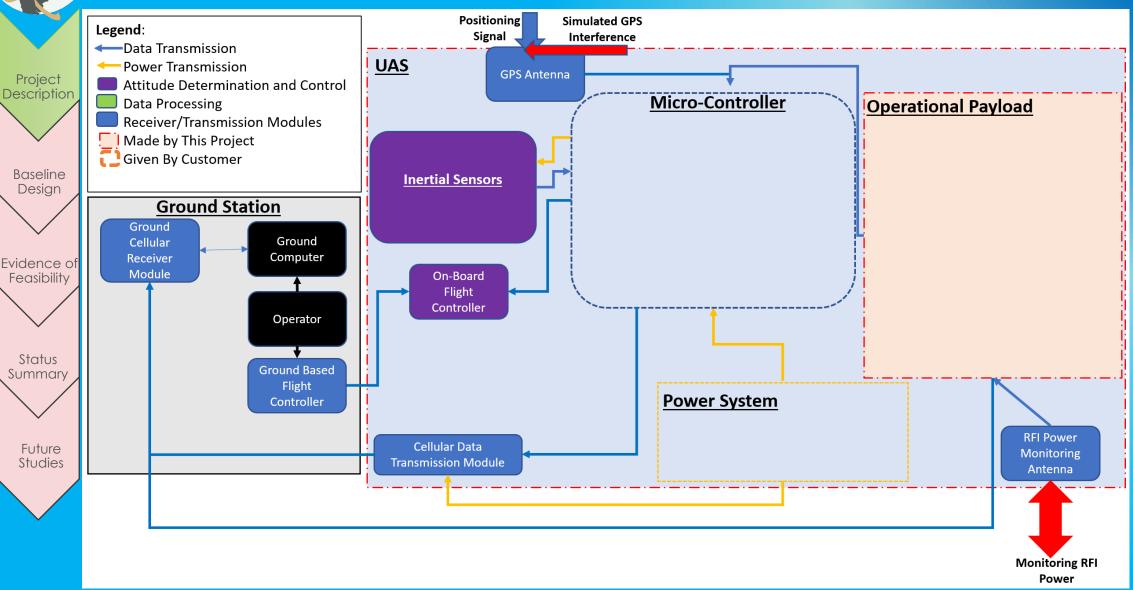
Baseline Design

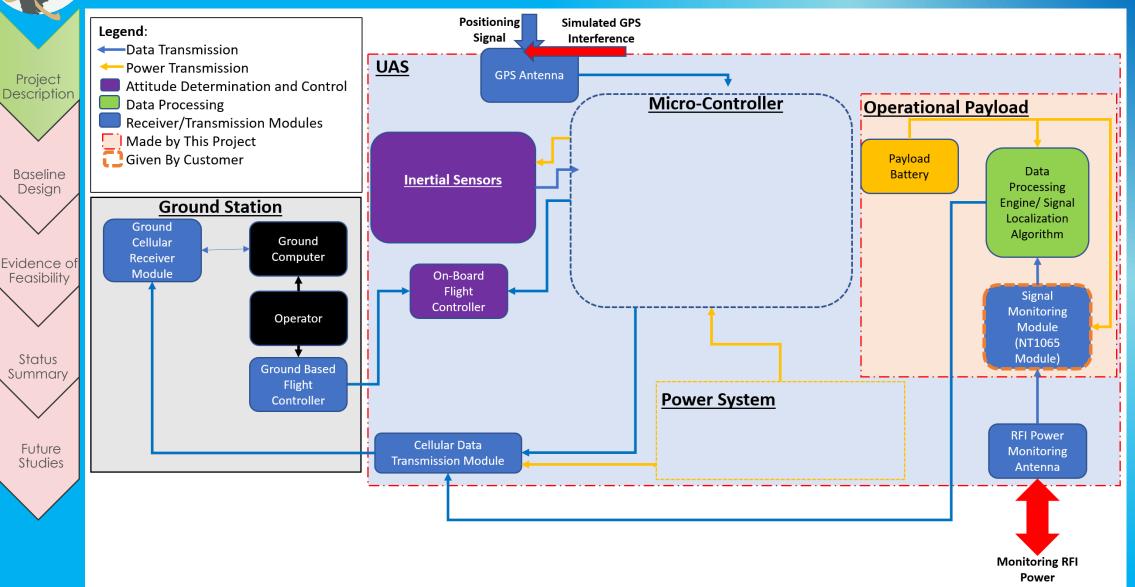
Evidence Feasibilit

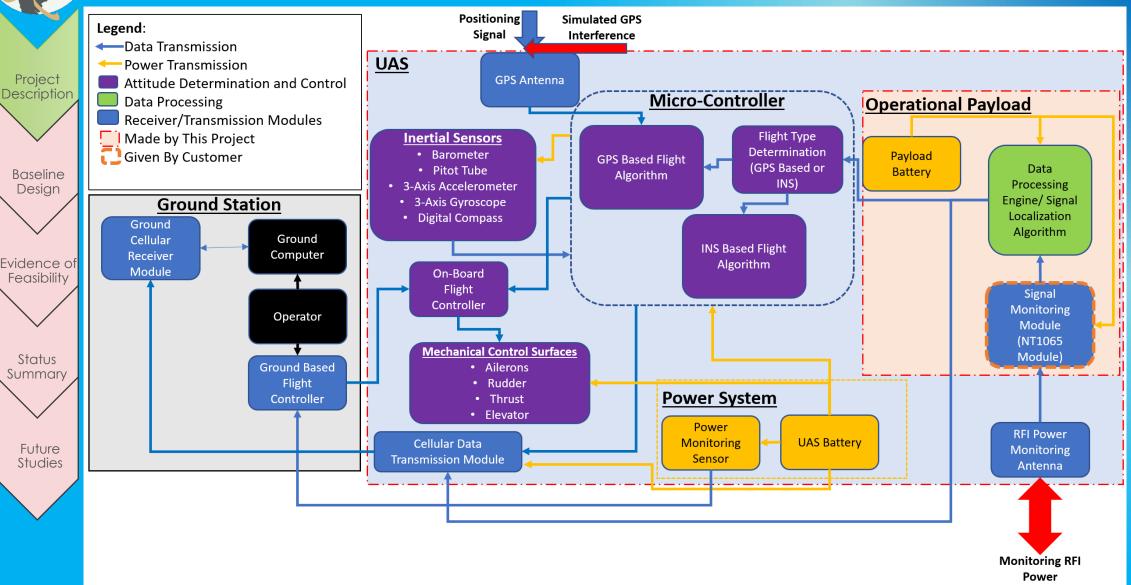
Status Summar

> Future Studies


FUNCTIONAL REQUIREMENTS – PT. 2


on	Functional Requirement	Description
e	FR 8.0	The system shall have the ability to switch between the GPS and GPS-denied flight modes within 1 second of RFI detection
e of ty	FR 9.0	The system shall transmit data for all six degrees of freedom
ry	FR 10.0	The system shall create a profile of RF signal power
e s	FR 11.0	The payload components shall be in a stable self- contained structure
\$	FR 12.0	The payload shall have the ability to measure and localize an RFI source in GPS denied environments



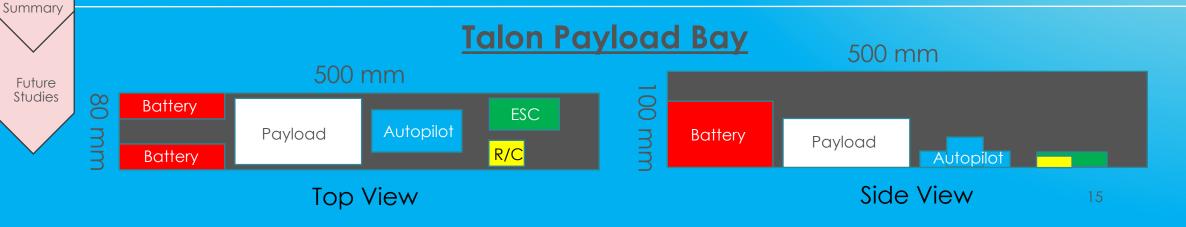

Signal Strength

Signal Source

BASELINE DESIGN

Algorithm

Payload


UAS PLATFORM

X-UAV Talon

Key Features

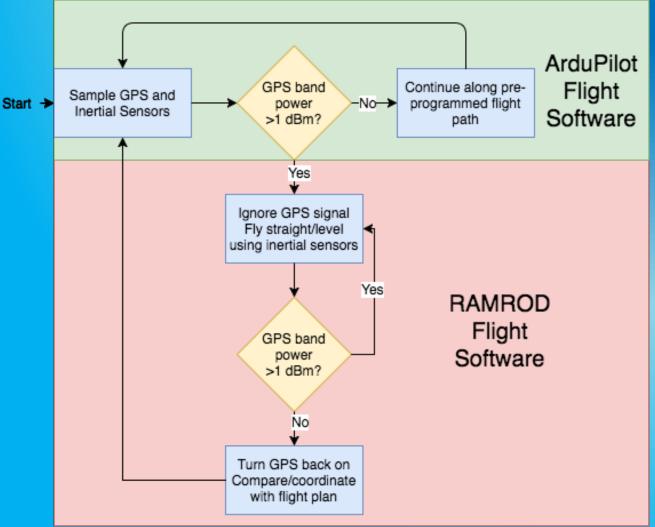
- Long Flight Times (1+ hr)
- Stable Flight (Tri-tail)
- Large Payload Bay
- Native Autopilot Compatibility
- Affordable
- IRISS Supported

FLIGHT ALGORITHM BREAKDOWN

The flight algorithm will use

flight with access to GPS

the ArduPilot code base for


Proiect Description

- Baseline Design

- Status Summarv Future **Studies**
- Evidence of Feasibility

signal

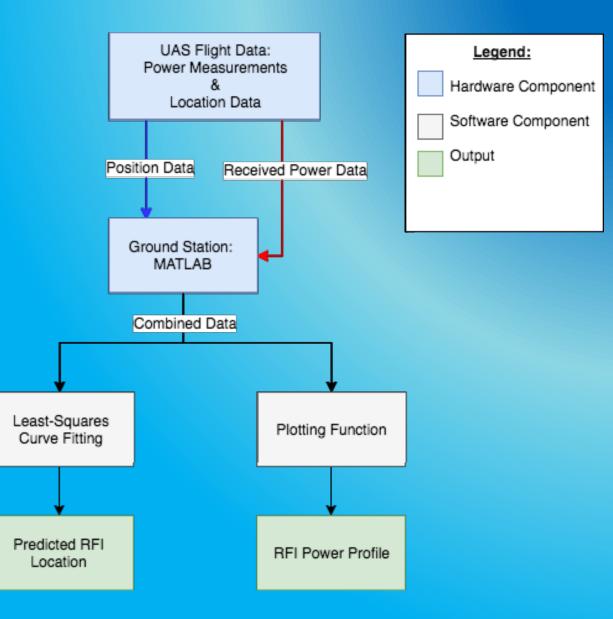
When GPS band power increases above threshold, switch to RAMROD INSassisted flight mode

Baseline

Design

Evidence of Feasibility

Status Summarv


Future

Studies

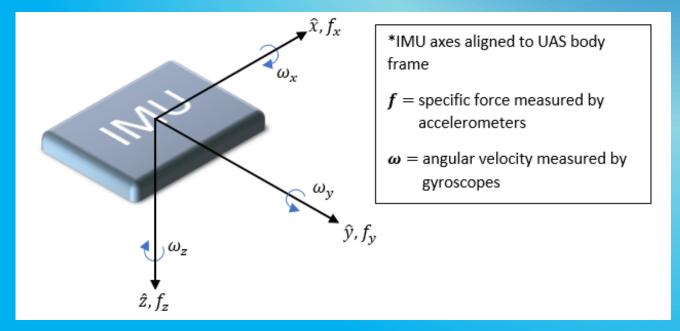
LOCALIZATION BREAKDOWN

 Position and RFI power data will be combined for post processing

 RFI source will be located using a leastsquares method of curve-fitting

Project Description

Baseline


Design

Evidence of Feasibility

Status Summary

> Future Studies

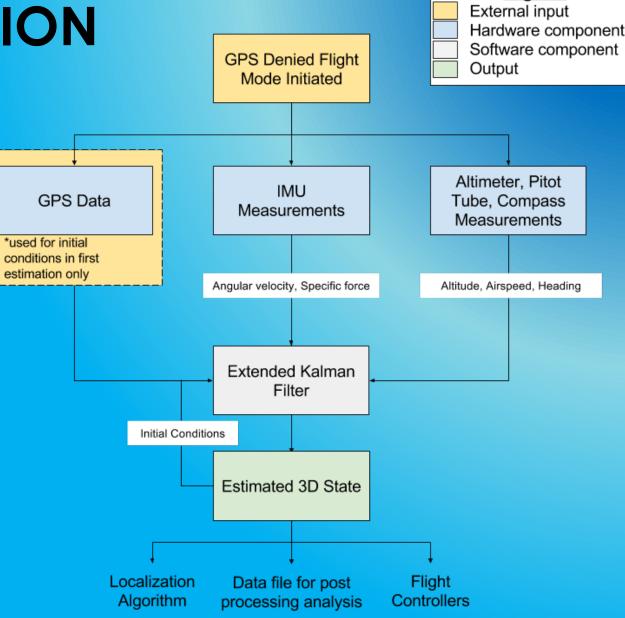
- Results of the GPS denied navigation trade study indicate INS as the most feasible for this project
- Key Features:
 - Three dimensional state
 estimations
 - Output data rates $\geq 100 Hz$
 - Can increase accuracy with additional sensor inputs
 - Small size and weight
 - Detailed documentation

INERTIAL NAVIGATION SYSTEM

Project Description

Baseline

Design


Evidence of

Feasibility

Status Summary

> Future Studies

- Unaided INS: IMU only
 - IMU: six degrees of freedom
 - 3 accelerometers
 - 3 gyroscopes
- Aided INS: integration
 with additional sensors
 - Altimeter (barometric)
 - Pitot tube
 - Digital compass

Legend:

OPERATIONAL PAYLOAD NT1065

Design Drivers

Project

Description

Baseline

Design

Evidence of

Feasibility

Status Summary

Future

Studies

Measures an RFI power source
 on multiple GPS bands

What can it do?

- NT1065 takes RF power readings
- Interface for external antenna
- Filters raw data
- Sends data to a processor

What must be done:

 Board must be redesigned to have internal splitting.

Project

Description

Baseline

Design

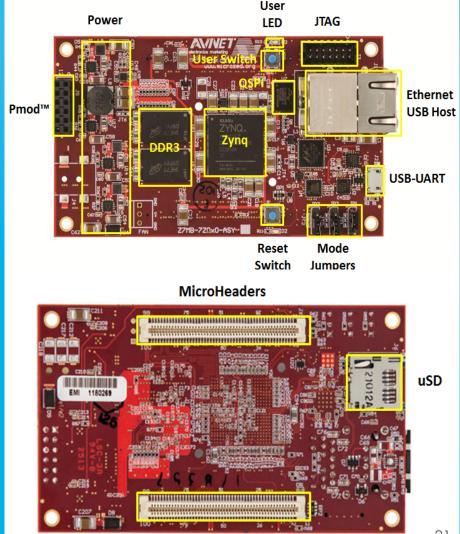
Evidence of

Feasibility

Status

Summarv

Future Studies


OPERATIONAL PAYLOAD MICROZED

Design Drivers

- RFI source data must be stored
- RFI data must modified and downlinked

Why this board?

- Stores data from NT1065 on microSD card
- Interface for cellular
 modem for data downlink
- Proven to interface with NT1065
- Sufficient processing power

MicroHeaders

21

Project Description

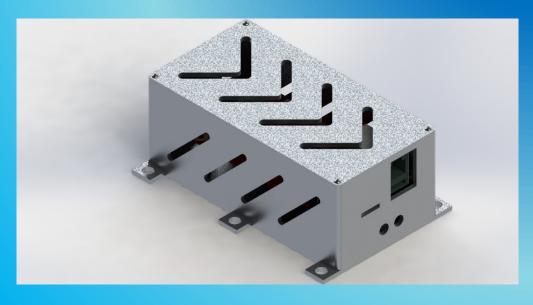
Baseline

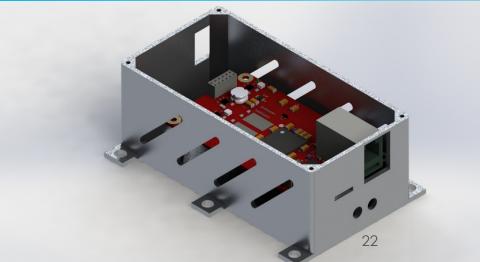
Design

Evidence of Feasibility

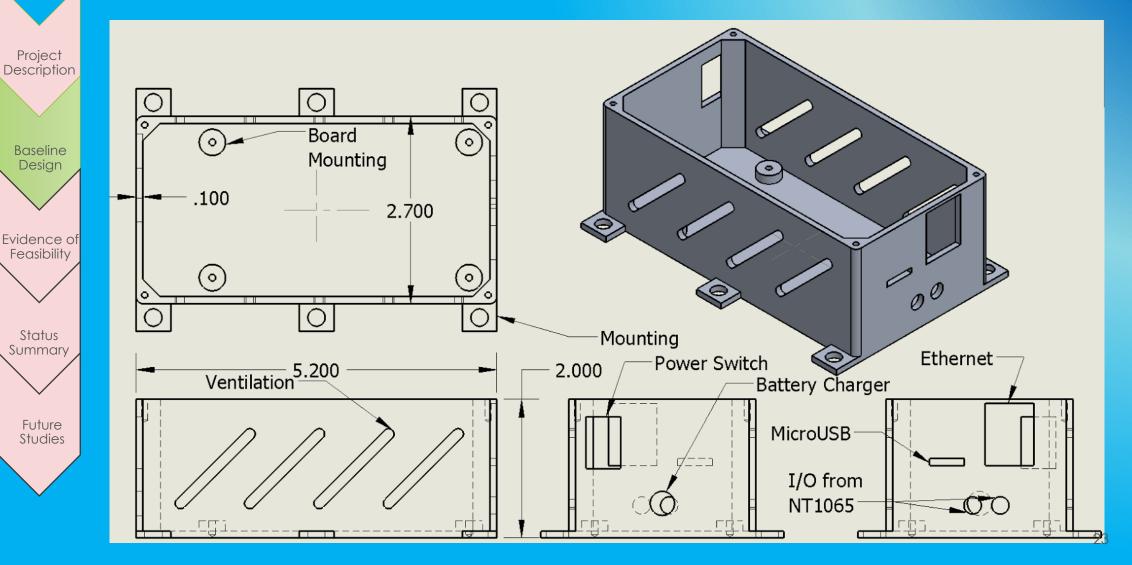
Status Summary

> Future Studies


OPERATIONAL PAYLOAD


Design Drivers:

- Must fit inside UAS Payload Bay
- Must weigh below 1 kg
- Temperature must remain below electrical components' operating temperature


Included Components:

- Redesigned NT1065 signal filter
- MicroZed micro-processing unit
- Power Supply
- Power Switch and additional wiring

OPERATIONAL PAYLOAD

Project Description

Baseline Design

Evidence of Feasibility

Status Summary

> Future Studies

EVIDENCE OF FEASIBILITY

UAS ENDURANCE

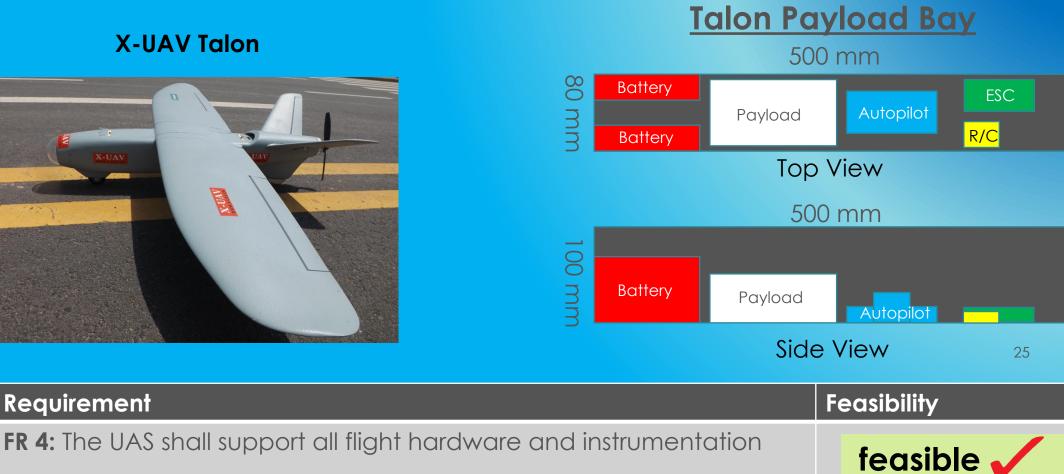
UAS PLATFORM

X-UAV Talon

AMPA

Project Description

> Baseline Design


Evidence of Feasibility

Status Summary

Requirement

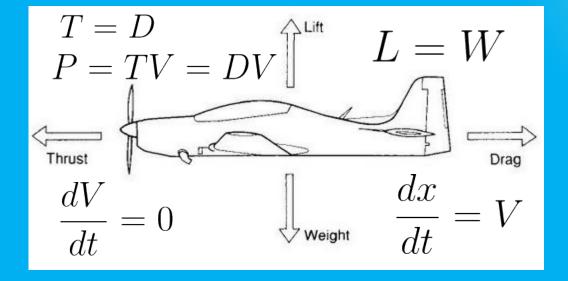
Future Studies

FR 6: The UAS shall be capable of storing the operational payload

feasible 🧹

Baseline Design

Evidence of Feasibility


Status

Summary Future

Studies

UAS ENDURANCE MODEL

- 1. Can the selected UAS platform achieve a 63minute flight time?
- 2. How do we optimize for minimum power?
- 3. How much will the UAS weigh?

Assumptions
E = 63 min (inc. 5% buffer)
Worst-case headwind is 10 m/s
Steady, level flight throughout
Battery discharge depth is 80%
Overall system efficiency is 85%

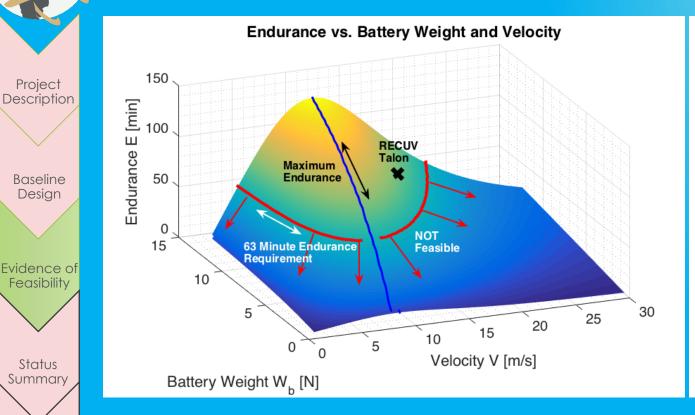
UAS ENDURANCE ESTIMATION

120

60

40

20


0

10

15

[ш¹⁰⁰ во ш

Endurance

• Endurance as a function of battery weight and velocity

Future

Studies

- Max Endurance :~ 109 mins @ 11.4 m/s (21000 mAh battery)
- 14000 mAh battery yields 84 min endurance @ 10.2 m/s

 $E = \frac{3600W_b \sigma V_b D_b}{\left(\frac{1}{2}\rho V^3 S C_{D,0} + \frac{W}{\frac{1}{2}\rho V S} \frac{1}{\pi e b^2}\right) \eta_{system} g}$

NOT Feasible

25

Endurance vs. Battery Weight and Airspeed w/ 10 m/s headwind

RECUV

Talon

63 minute flight time

20

Airspeed V [m/s]

0

Battery Weight W_L [N]

15

10

Project Description

> Baseline Design

Evidence o Feasibility

Status Summary

> Future Studies

UAS WEIGHT – RAMROD TALON

		Component	Mass [g]						
on		Talon Airframe	1050				61.		
÷		Battery	845	6	ANY SEE HIGH TO BE			Motor	
		Payload	900		POLICICE 700math	DATTERY	CC BEC Pro	Receiver	
of y		Additional Hardware	537						
1			RECU	RECUV Talon Mass			3,343	g	
		TOTAL	3,332	RAMROD Talon Mass w/ Same Batt			ery	3,332	g
	Requirement				Feasi			oility	
	FR 1: The UAS shall support all flight hardware and instrumentation fea					asible			

feasible 💊

FR 2: The UAS shall fly in maximum winds of 30 km/hr (8 m/s)

Project Description

Baseline Design

Status Summary

> Future Studies

EVIDENCE OF FEASIBILITY

ALGORITHM

AMROD

Project Description

Baseline

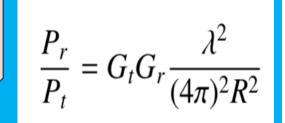
Design

Evidence of

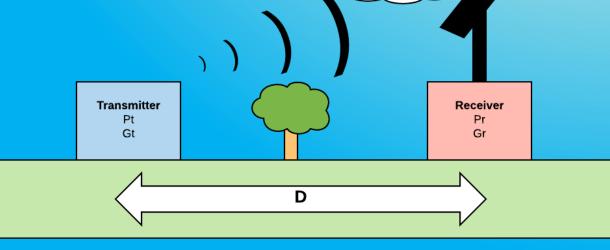
Feasibility

Status Summary

Future


Studies

FEASIBILITY STUDY: ALGORITHM


Feasibility Study: The algorithm shall create an RFI Power Profile and the algorithm shall localize the RFI source within a 40 meter radius

Assumptions:

- Signal decays with free-space attenuation
- Transmitter and receiver antenna gains are 0.80
- There is an average position error of 10m per measurement
- All other losses are ignored
- <u>Theory</u>: free space loss equation

R: Distance from transmitter to receiver Pr: Power Received Pt: Power Transmitted Gt: Transmitter Antenna Gain Gr: Receiver Antenna Gain λ : Signal Wavelength

Environment Losses

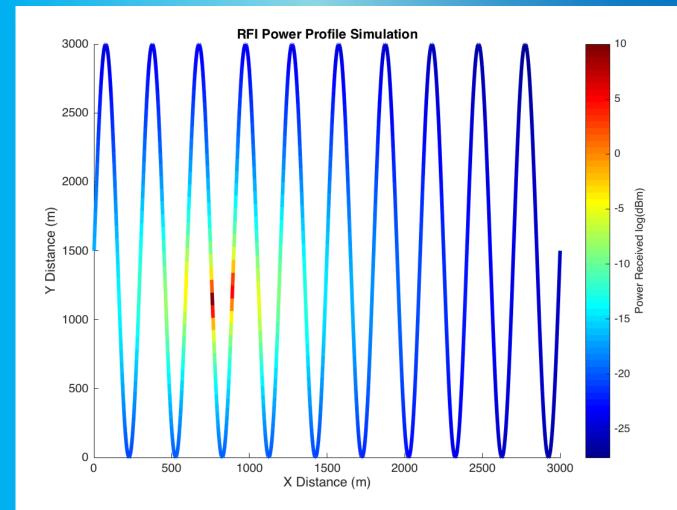
ALGORITHM RFI POWER PROFILE

Project Description

Baseline Design

Evidence o⁻ Feasibility

Status


Summary

Future Studies •

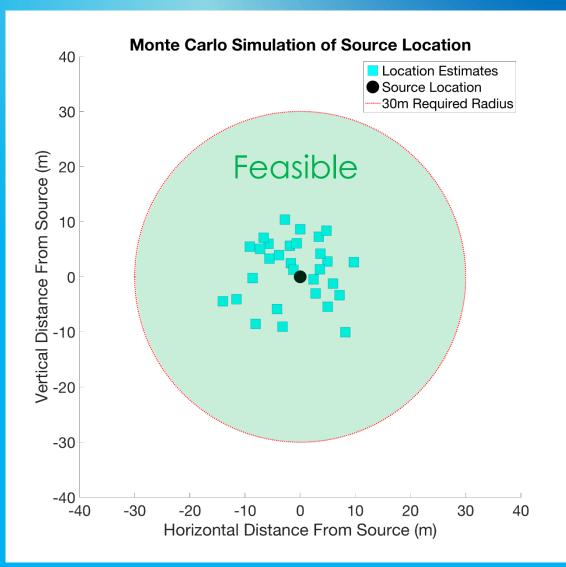
The power profile will show measured position and power data

The power profile will be created in MATLAB during post-processing

Based on simulated flight data using freespace loss theory and simulated position data, the profile is **feasible**

Baseline

Design


Evidence of Feasibility

Status Summary

> Future Studies

LOCALIZATION USING OF PDOA

- Monte Carlo simulation with 30 trials
- +/- 40m error in each x and y coordinate
- Average distance error: 8 m
- Based on simulation, the localization is feasible

LOCALIZATION USING OF PDOA

Project Description

Evidence of Feasibility

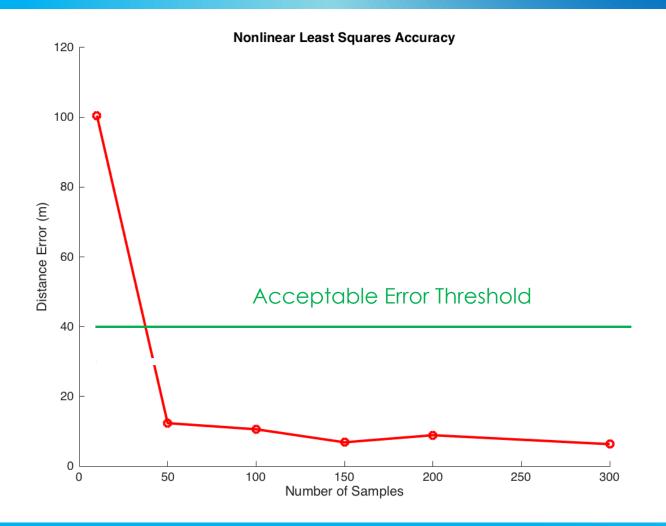
Status

Summary

Future **Studies** Sampling at 1 Hz over the GPS denied area is sufficient

Non-linear least squares

method repeated for 10-


300 samples with 5 trials.

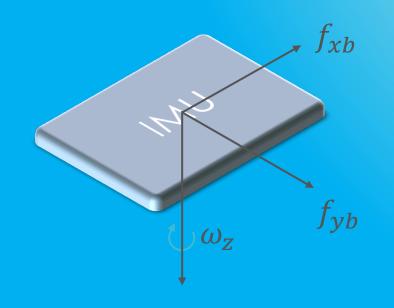
Each trial had a randomly

placed RFI source within

the search grid

Project Description

Baseline Design



Future Studies

EVIDENCE OF FEASIBILITY

GPS DENIED FLIGHT

INS ERROR MODEL

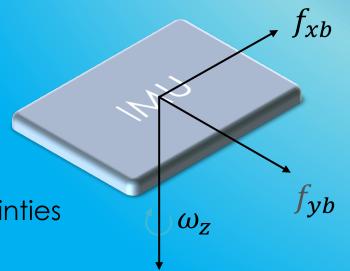
• Motivation:

Project

Description

Baseline

Design


Evidence of Feasibility

Status

Summary

Future Studies

- Show that an unaided INS can achieve the required accuracy of 40m
- Assumptions:
 - Two dimensional
 - Earth effects negligible
 - Coriolis effect
 - Rotation
 - Sensor bias and random walk
 parameters are most significant uncertainties

INS ERROR MODEL

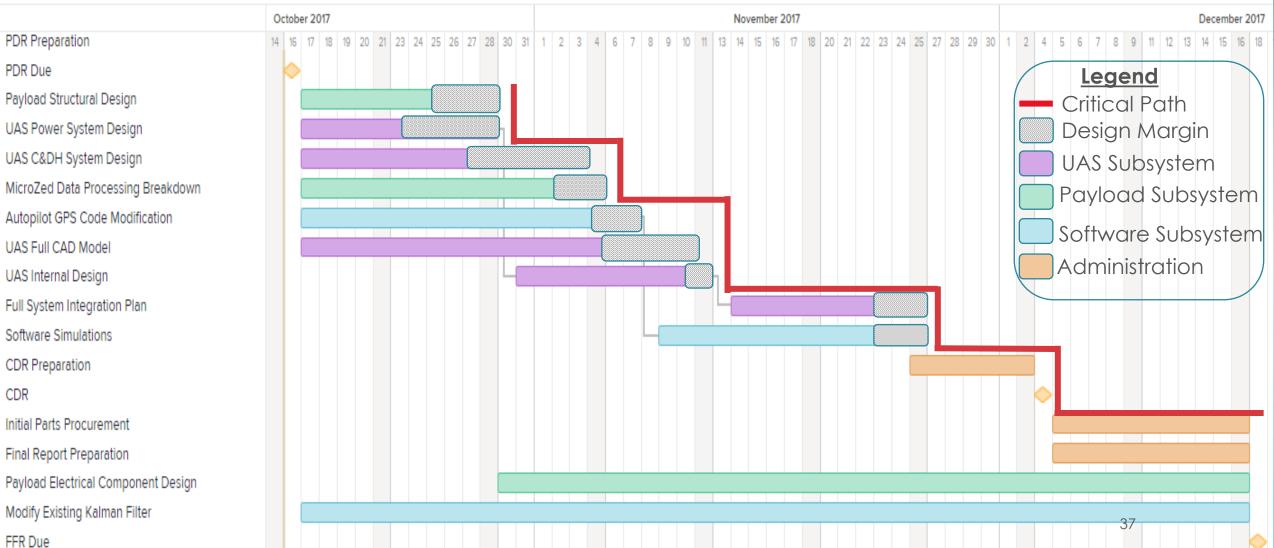
Horizontal Position Errors - HG1120CA50 50 45 40 $\delta x = 24.0 m$ 35 $\delta y = 26.1 m$ 30 Error (m) 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100 Time (s)

Project Description

> Baseline Design

Evidence of Feasibility

Status Summary


> Future Studies

Honeywell IMU (\$1594.67) $\delta p = 35.4m$

SCHEDULING

Project

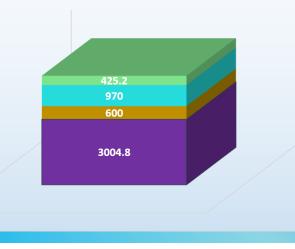
Description

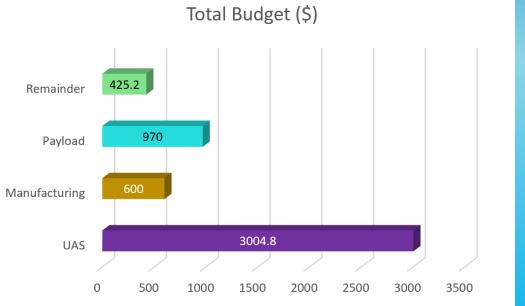
Baseline Design

Evidence of Feasibility

Status Summary

Future


Studies


PRELIMINARY BUDGET

<u>System</u>	<u>Expenditures</u> (\$)
Total Budget	5000
UAS	3004.8
Payload	970
Manufacturing	600
Total Expense	4574.8
<u>Most Notable</u>	Expenses (\$)
INS	1500
Microzed	220
NT1065	500

PRELIMINARY BUDGET (\$)

UAS Manufacturing Payload Remainder

Note: An Additional 20% was added to UAS expenses to accommodate for potential losses due to component failure.

FEASIBILITY SUMMARY AND FUTURE WORK

	Functional Requirement	Feasibility Shown	Future Work
FR 1.0	The UAS shall have a flight time of 60 minutes	Power Estimate	Refine power estimate as components change
FR 2.0	The UAS shall fly in maximum winds of 30km/hr	RECUV Headwind Model	Flight demonstration and PixHawk simulations
FR 3.0	The UAS shall fly in a GPS denied environment for a distance of up to 2 km and a time of 200 seconds	INS Error Model	3D Error model with additional sensors
FR 4.0	The UAS shall support all flight hardware and instrumentation	Weight Estimation	CG / weight balance analysis and full payload bay CAD model
FR 5.0	The UAS and its testing shall adhere to FAA and CU Boulder regulations		Obtain certification through FAA and CU
FR 6.0	The UAS shall be capable of flying the operational payload	Weight Estimation	CG / weight balance analysis

FEASIBILITY SUMMARY AND FUTURE WORK

	Functional Requirements	Feasibility Shown	Future Work
FR 7.0	The system shall fly autonomously given a pre-programmed flight plan		Additional PixHawk simulations
FR 8.0	The system shall have the ability to switch between the GPS and GPS- denied flight modes within 1 second of RFI detection		Signal switch testing for Wi- Fi signals and simulations using previous data
FR 9.0	The system shall transmit data for all 6 degrees of freedom		Data transmission test and link margin
FR 10.0	The system shall create a profile of RF signal power	Free Space Loss Theory	Create RF power Profile using past data
FR 11.0	The payload components shall be in a stable self-contained structure	Preliminary CAD Model and Talon Payload Analysis	Full CAD model, structural and thermal analysis
FR 12.0	The payload shall have the ability to measure and localize an RFI source in GPS denied environments	PDOA Model	PDOA simulations with past data

REFERENCES

[1].Chen, H., Lin, T., Kung, H. T., Lin, C., & Gwon, Y. (n.d.). Determining RF Angle of Arrival Using COTS Antenna Arrays: A Field Evaluation [Scholarly project]. In School of Engineering and Applied Sciences Harvard University. Retrieved September 29, 2017.

[2].EngineersGarage, "Microcontrollers," EngineersGarage Available: <u>https://www.engineersgarage.com/microcontroller</u>.

[3]. Grade, K., "Introduction to Inertial Navigation and Kalman Filtering," Navigation Laboratory, Jun. 2008.

[4].Zheng, L., & Xue, R. (2011). Signals of Opportunity Navigation Methods for Complex Lower Airspace Flight. 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS).

[5]. Jackson, B. R., Wang, S., and Inkol, R., "Emitter geolocation estimation using power difference of arrival ," An algorithm comparison for noncooperative emitters , May 2011.

REFERENCES

[6]. Arshal, George. "Error equations of inertial navigation", Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4 (1987)

[7]. Goshen-Meskin, Drora and Itzhack Y. Bar-Itzhack. "Unified approach to inertial navigation system error modeling", Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3 (1992)

[8]. Kallapur, Abhijit and Salman, Shaaban & Anavatti, S.G.. (2007). "Application of Extended Kalman Filter Towards UAV Identification". Studies in Computational Intelligence. 76.

[9]. Taylor, John. (1997) "An Introduction To Error Analysis".

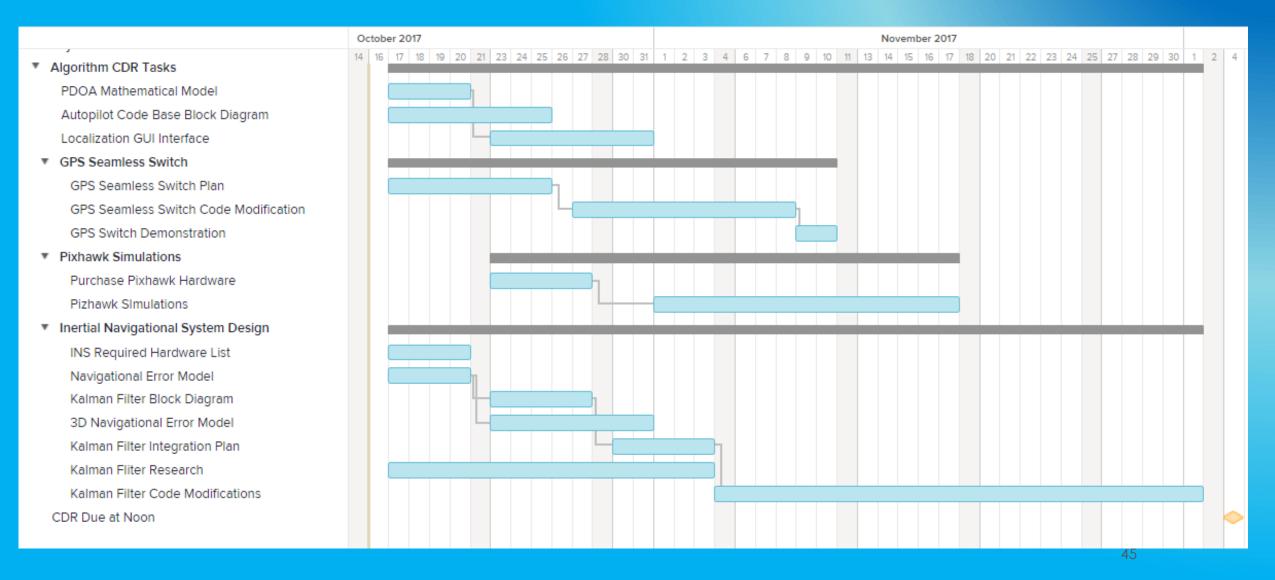
[10]. Titterton, David H. and Weston, John L. (2004). "Strapdown Inertial Navigation Technology (2nd Edition)". The Institution of Engineering and Technology.

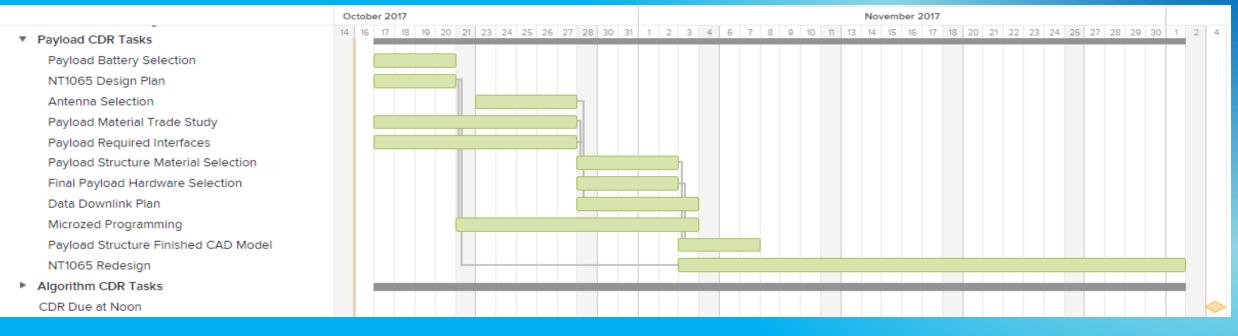
[11]. https://itsallrc.wordpress.com/2014/02/19/how-to-calculate-drag/

[12]. http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node97.html

REFERENCES

[13]. Brain, M., "How Microprocessors Work," How Microprocessors Work | HowStuffWorks Available: http://computer.howstuffworks.com/microprocessor.html

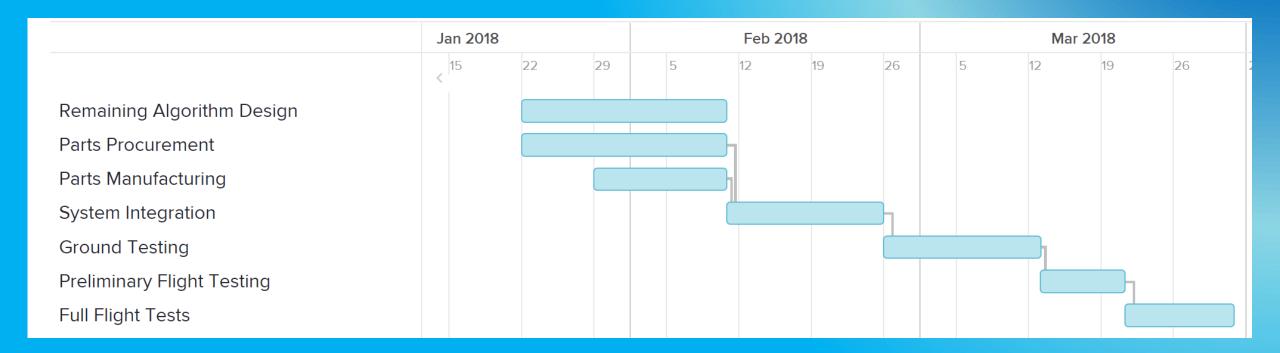

[14]. "Microcontroller Invention History - Who Invented first Microcontroller," Electronic Circuits and Diagram-Electronics Projects and Design Available: http://www.circuitstoday.com/microcontroller-invention-history.


[15]. "What is a Microprocessor? How does it work?," electroSome Available: https://electrosome.com/microprocessor/.

[16]. Wolf, M., Computers as components: principles of embedded computing system design, Amsterdam: Elsevier/Morgan Kaufmann, 2017.

[17] Dixon, C., Integrated Remote and In Situ Sensing (IRISS)

BACK UP SLIDES



	00	tob	er 201	7																			No	veml	ber 2	017												
 UAS CDR Tasks 	14	16	17 1	18 1	9 20	21	23	24	25 2	6 27	28	30 3	81 1	1 2	3	4	6	7	8	9	0 1	1 13	14	15	16	17	18	20 2	1 22	23	24	25	27 2	28 2	9 30	1	2	4
 UAS Power System Design 						÷																																
UAS Power System Block Diagram						h																																
Power System Hardware Selection						L																																
C&DH System Design							-									1																						
C&DH Block Diagram											h																											
C&DH Components List											L																											
UAS CAD Model																																						
UAS Body CAD Model																																						
UAS CAD Assembly										_	Ē																											
 UAS Internal Design 											÷											t.				-												
Payload Bay Layout Diagram											h																											
UAS ICD											ŀ																											
Talon Frame Modifications Document											-					Dj																						
UAS Final Bill of Materials																				1																		
UAS Final CG Estimation																																						
UAS Manufacturing Plan																																						
Payload CDR Tasks																																						
Algorithm CDR Tasks																					1	i.																
CDR Due at Noon																																	47	7			<	

			er 20																						/emb														
	14	16	17	18	19	20	21 2	3 24	25	26	27	28 3	0 3	1	2	3	4	6	7	8	9 10	11	13	14	15	16	17 1	8 2	0 21	22	23	24	25 2	7 28	3 29	30	1	2	4
 Administration 																																							
Risk Analysis											-																												
UAS Risk Analysis																																							
Payload Risk Analysis																																							
Algorithm Risk Analysis																																							
Full Risk Report																																							
▼ Test Plans							12				÷																												
Required Testing Document																																							
Ground Test Plans																																							
Preliminary Flight Test Plans																																							
Full System Test Plans																																							
Finalized Budget																																							
Detailed Spring Schedule																																							
Finished CDR Slides																																							
CDR Preparation																																							
CDR Due																																						<	

PRELIMINARY SPRING SCHEDULE

BUDGET BACKUP SLIDE

<u>Item</u>	<u>System</u>	<u>Quantity</u>	<u>Total Price</u>
Talon Airframe	UAS	1	\$130
Pixhawk Px4	UAS	1	\$150
7000mah LiPo	UAS	2	\$200
INS	UAS	1	\$1500
Motor	UAS	1	\$70
Propeller	UAS	1	\$5
ESC	UAS	1	\$90
Camera	UAS	1	\$60
Charger	UAS	1	\$100

BUDGET BACKUP SLIDE

<u>Item</u>	<u>System</u>	<u>Quantity</u>	<u>Total Price</u>
Charger Case	UAS	1	\$13
HS-5055 Servo	UAS	2	\$36
HS-5065	UAS	2	\$70
Reciever	UAS	1	\$40
Wing Extension	UAS	1	\$40
Microzed	Payload	1	\$220
NT1065	Payload	1	\$500
Aluminum Block	Payload	1	\$50
LTE Modem	Payload	1	\$200

BASELINE DESIGN UAS PLATFORM

Multi-Rotor

Faults:

- Flight Times Under 1 Hour
- Payload Capacity too Small

Outdoor Blimp

Faults

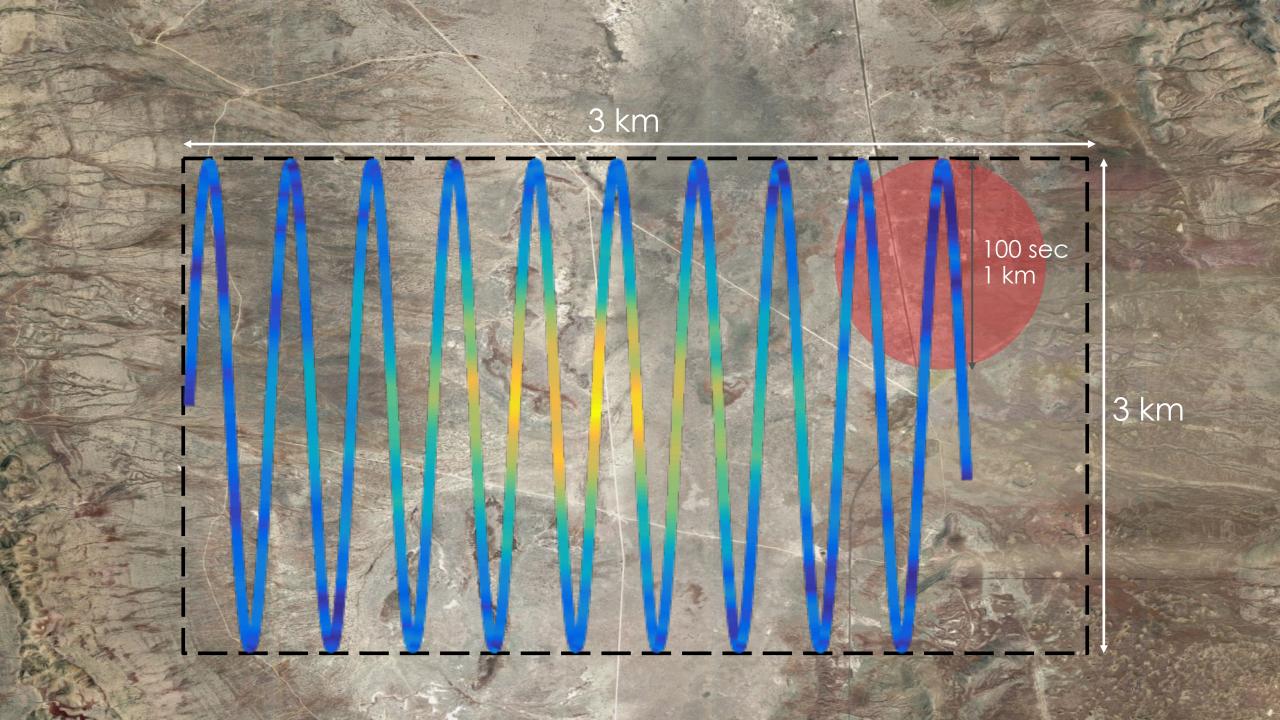
- Poor Performance in adverse weather and High winds
- Expensive (Over \$5000)
- High Maintenance and Launch Preparation

BASELINE DESIGN UAS PLATFORM

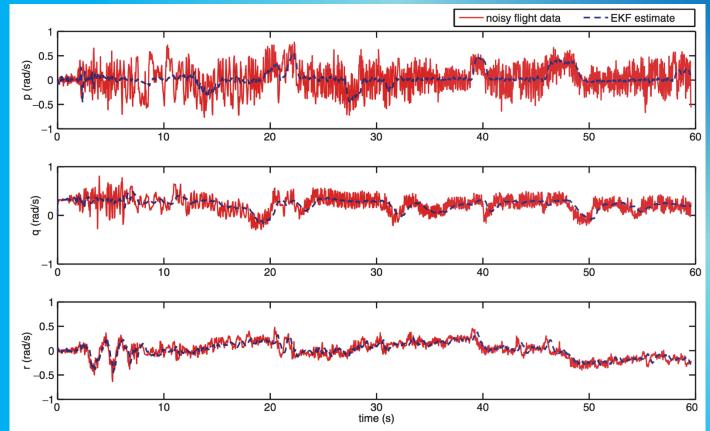
Fixed-Wing

Capabilities:

- Over 1 hour of flight time
- High Payload Capacity
- Good Adverse Weather and High Wind Performance
- Cost effective and Low Maintenance
- Customer Approved



Type of fixed wings:


V-tail

- Delta
- Dual Boom

INERTIAL NAVIGATION EXTENDED KALMAN FILTER

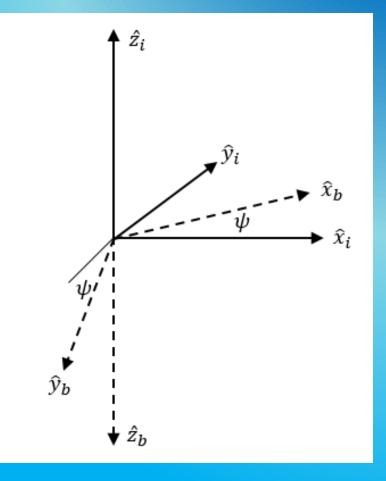
- EKF vs standard Kalman Filter
- Proven for a Pixhawk powered fixed-wing platform
- Increased state estimation accuracy
- Ability to integrate sensors in addition to the IMU (e.g. magnetometer, flow field, lidar, etc.)

"Application of Extended Kalman Filter Towards UAV Identification." Studies in Computational Intelligence

 2D Equations of Motion using IMU measurements*

$$\dot{\psi} = -\omega_{zb}$$

$$f_{xi} = f_{xb} \cos \psi + f_{yb} \sin \psi$$


$$f_{yi} = f_{xb} \sin \psi - f_{yb} \cos \psi$$

$$\dot{v}_{xi} = f_{xi}$$

$$\dot{v}_{yi} = f_{yi}$$

$$\dot{x}_i = v_{xi}$$

$$\dot{y}_i = v_{yi}$$

• General uncertainty propagation of independent random errors in a function q = f(x, ..., z)

$$\delta q = \sqrt{\left|\frac{\partial q}{\partial x}\delta x\right|^2 + \dots + \left|\frac{\partial q}{\partial z}\delta z\right|^2}$$

Then let

$$\delta \boldsymbol{q} = \begin{bmatrix} \delta \boldsymbol{\psi} \\ \delta \boldsymbol{v}_{xi} \\ \delta \boldsymbol{v}_{yi} \\ \delta \boldsymbol{x}_i \\ \delta \boldsymbol{y}_i \end{bmatrix}$$

• Adapted EOM as uncertainties:

$$\delta \dot{\boldsymbol{q}} = \begin{bmatrix} \delta \dot{\psi} \\ \delta \dot{v}_{xi} \\ \delta \dot{v}_{yi} \\ \delta \dot{v}_{yi} \\ \delta x_i \\ \delta y_i \end{bmatrix} = \begin{bmatrix} -\delta \omega_{zb} \\ \delta f_{xb} \cos \delta \psi + \delta f_{yb} \sin \delta \psi \\ \delta f_{xb} \sin \delta \psi - \delta f_{yb} \cos \delta \psi \\ \delta v_{xi} \\ \delta v_{yi} \end{bmatrix}$$

where,

$$\delta \omega_{zb} = G_{br} + G_{ir} + \frac{ARW}{2\sqrt{t}} \rightarrow \begin{cases} G_{br} = Gyro \ bias \ repeatability \ [dps] \\ G_{ir} = Gyro \ in \ run \ bias \ [dps] \\ ARW = Angle \ random \ walk \ [\circ/\sqrt{s}] \end{cases}$$

$$\delta f_{xb} = \delta f_{yb} = A_{br} + A_{ir} + \frac{VRW}{2\sqrt{t}} \rightarrow \begin{cases} A_{br} = Acc. \ bias \ repeatability \ [g] \\ A_{ir} = Acc. \ in \ run \ bias \ [g] \\ VRW = Velocity \ random \ walk \ [m/s/\sqrt{s}] \end{cases}$$

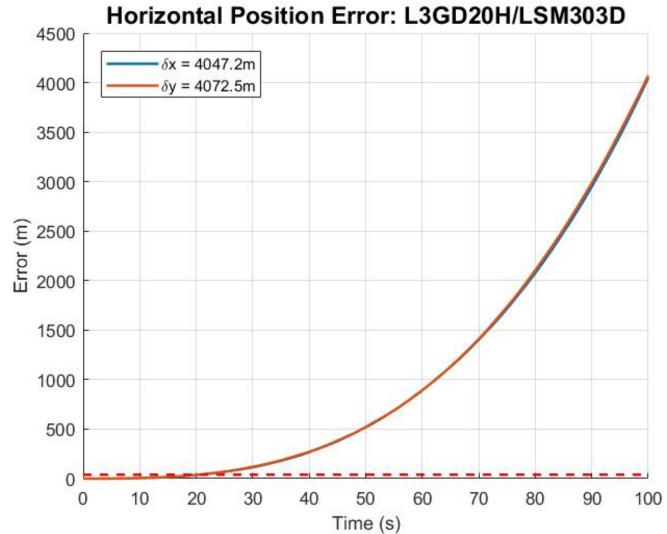
Derivation of the
$$\frac{ARW}{\sqrt{t}}$$
 and $\frac{VRW}{2\sqrt{t}}$ terms:
 $\delta\psi = \delta\psi + ARW \times \sqrt{t}$
 $\frac{d\delta\psi}{dt} = \delta\dot{\psi} + \frac{1}{2} \times ARW \times t^{-\frac{1}{2}}$
 $\Rightarrow \omega_z = G_{br} + G_{ir} + \frac{ARW}{2\sqrt{t}}$

Similarly,

$$\delta v = \delta v + VRW \times \sqrt{t}$$

$$\Rightarrow \delta f = A_{br} + A_{ir} + \frac{VRW}{2\sqrt{t}}$$

• Apply the general error propagation formula to the $\delta \dot{q}$ equations, get:


$$\omega_{zb} = \sqrt{G_{br}^2 + G_{ir}^2 + \left(\frac{ARW}{2\sqrt{t}}\right)^2}$$

$$\delta \dot{v}_{xi} = \sqrt{\left[\left(\cos \delta \psi + \sin \delta \psi\right) A_{br}\right]^2 + \left[\left(\cos \delta \psi + \sin \delta \psi\right) A_{ir}\right]^2 + \left[\left(\cos \delta \psi + \sin \delta \psi\right) \frac{VRW}{2\sqrt{t}}\right]^2 + \left[\left(A_{br} + A_{ir} + \frac{VRW}{2\sqrt{t}}\right)(-\sin \delta \psi + \cos \delta \psi) \delta \psi\right]}$$

$$\delta \dot{v}_{xi} = \sqrt{\left[(\sin\delta\psi - \cos\delta\psi)A_{br} \right]^2 + \left[(\sin\delta\psi - \cos\delta\psi)A_{ir} \right]^2 + \left[(\sin\delta\psi - \cos\delta\psi)\frac{VRW}{2\sqrt{t}} \right]^2 + \left[\left(A_{br} + A_{ir} + \frac{VRW}{2\sqrt{t}} \right) (\cos\delta\psi + \sin\delta\psi)\delta\psi \right]^2} \\ \frac{\delta \dot{x}_i = \delta v_{xi}}{\delta \dot{y}_i = \delta v_{yi}}$$

These equations were then numerically integrated using ode45 in MATLAB to obtain characterization plots and total error values

Pixhawk IMU (\$2.01 - Gyro, \$1.43 - Acc.) $\delta x = 4015m, \, \delta y = 4034m$ $\delta p = 5742m$

INS TRADE STUDY

Metric	Weight	Driving Requirement	Rationale
Position Estimation Ac-	0.25	FR 8, DR 6.2, DR 3.2	This metric is weighted highly at 0.25 because the
curacy			accuracy of position estimates made by the GPS-
			denied flight algorithm is a critical element in cre-
			ating a RFI profile. Since each RFI measurement
			must be associated with a location, it is desirable
			to have high accuracy in the estimations.
Component Cost	0.25	N/A	While there are no functional or design require-
			ments dictating the budget for the GPS-denied
			guidance method, the variations in cost of the
			possible components associated with each method
			must be considered with regard to the overall
			project budget. Cost is weighted highly at 0.25
			due to the generally expensive nature of other re-
			quired components for project RAMROD.
Rate of Position Esti-	0.10	DR 9.3, FR 8	By producing position estimates at a higher rate,
mates			the UAS will be more likely to be capable of fly-
			ing at higher speeds. Higher rates of position
			estimates will also result in a closer correlation
			to the RFI measurements in the case that posi-
			tion and RFI data are not synchronized. How-
			ever, each method has a relatively high rate com-
			pared to standard GPS rates, therefore this metric
			is weighted lower at 0.10.

INS TRADE STUDY

Method Robustness	0.25	DR 7.3, FR 3, DR 6.2.1, DR	It is important that the GPS-denied guidance
		6.2.2	method is robust enough to function with mini-
			mal reliance or interfacing with external systems,
			components, or data. Dependence on external sys-
			tems or components may subject the UAS to un-
			wanted, additional sources of risk or error, which
			the team may be unable to properly mitigate. Fur-
			thermore, applications of this project may require
			operation in desolate or hostile territory, where it
			would be undesirable, or even impossible, to use
			external dependencies. Therefore, this metric is
			weighted at 0.25.
Processing Complexity	0.15	DR 4.1	The size of the processing unit, and thus its pro-
Trocessing complexity	0.15		cessing power, is restricted mostly by UAS pay-
			load size constraints and mass budget. The UAS
			must be capable of supporting all hardware and in-
			strumentation, so a method requiring a large pro-
			cessing unit is undesirable. The team must also
			be able to use or write software which processes
			the data and computes the position estimations.
			While this metric is important, it isn't as critical as
			some of the others, hence a slightly lower weight
			of 0.15.

INS TRADE STUDY

Metric	1	2	3	4	5	Metric	Weight	INS	LiDAR Based	LTE
Position Estimation Accuracy (m)	>200	150-200	100-149	50-99	0-49	Position Estimation Accuracy	0.25	3	5	2
Component Cost (USD)	>3000	2000-2999	1000-1999	100-999	<100	Component Cost	0.25	3	1	4
Rate of Position Estimates (Hz)	1-99	100-199	200-299	300-399	>400	Rate of Position Estimates (Hz)	0.10	5	3	1
Method Robustness	Dependent on additional	Much reliance on additional	Some reliance on additional	Minimal reliance on additional	Zero reliance on additional	Method Robustness	0.25	4	2	2
Processing	systems Beyond	systems Complex	systems Moderate	systems Basic	systems	Processing Complexity TOTAL	0.15	3	2	4
Complexity	scope					TOTAL	1.0	5.45	2.0	2.7

UAS SELECTION TRADE STUDY

Metric	RV Jet	Skywalker	Tech Pod	Sky Hunter	Talon
Cost (\$):	170	170	140	140	120
Max Payload (kg):	2	2.3	1	1.2	1
Payload Volume (mm³):	175 x 170 x 70	300 x 150 x 70	200 x 80 x 70	N/A	500 x 100 x 80
Flight Duration (hr):	1	2	1.5	1.5	1.5
Cruise Speed (km/hr):	60	40	60	N/A	50
Max Speed (km/hr):	100	85	100	N/A	90

UAS SELECTION TRADE STUDY - JUSTIFICATION

Metric:	1	2	3	4	5
Cost:	320	270	220	170	120
Max Payload:	1	1.33	1.65	1.98	2.3
Payload Volume:	1	1.75	2.5	3.25	4
Autopilot Compatibility:	Not Compatible	Delta Wing	Dual Boom	V-tail	Conventional
Spare Part Availability:	No Spare Parts	Limited Under \$100	Limited Under \$50	All Parts under \$100	All Parts under \$50
Flight Duration:	1 Hours	1.25 Hours	1.5 Hours	1.75 Hours	2 Hours
Complexity of Frame:	4+ Hour Assembly	Less Than 4 Hour Assembly	Less Than 3 Hour Assembly	Less Than 2 Hour Assembly	Less Than 1 Hour Assembly
Adverse Weather Performance:	Less than 50 kph max speed	50 kph max speed and below 3 kg	50 kph max speed and above 3 kg	90 kph max speed and below 3 kg	90 kph max speed and above 3 kg
IRISS Support:	Not Supported	N/A	N/A	N/A	Supported

UAS TRADE STUDY

Metric:	Weights	Skywalker x8	Talon	Sky Hunter	RV Jet	Tech Pod
Cost:	0.2	4.00	5.00	4.60	4.00	4.60
Max Payload:	0.1	5.00	2.54	1.62	4.08	1.00
Payload Volume:	0.1	3.76	2.96	1.00	5.00	1.00
Autopilot Compatibility:	0.15	2.00	4.00	3.00	2.00	5.00
Spare Part Availability:	0.1	4.00	3.00	2.00	5.00	1.00
Flight Duration:	0.05	5.00	1.67	1.00	1.00	2.33
Complexity of Frame:	0.05	5.00	4.00	1.00	4.00	3.00
Adverse Weather Performance:	0.1	4.00	3.00	3.00	3.00	2.50
IRISS Support:	0.15	1.00	5.00	1.00	1.00	1.00
Totals:	1	3.43	3.78	2.38	3.21	2.64

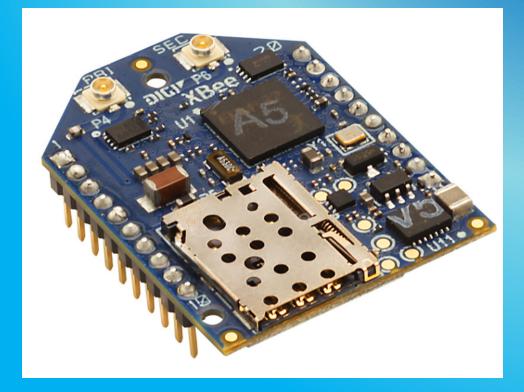
MULTI-ROTOR SPECIFICATIONS

Proprietary

Home Built

Flight Time	55 Minutes	
Battery	Lithium Silicon	
Frame	Carbon Composite	
Payload Capacity	None	

Flight Time	2 hours
Battery	Lithium Ion
Frame	Aluminum
Payload Capacity	None


BLIMP SPECIFICATIONS

Flight Time	1 Hour
Battery	Lithium Polymer
Frame	Polyurethane envelope and Helium Filled
Payload Capacity	2 kg
Cost	\$5510
Weather Performance	Under 15 kph winds

LTE MODEM

- Used for transmitting IF data to the ground from the payload.
- Still in the process of doing research to pick one out.
- Digi XBee Cellular LTE Cat 1 is a possible modem suggested by the customer.

SPECS ON THE DIGI XBEE CELLULAR LTE MODEM

- UART, 921 kbps
- 4 ADC Lines
- 15 GPIO Lines
- Programmable with 24KB RAM. 8KB Flash
- Can add external antenna
- Transmit Power at 23 dBm
- Receive Sensitivity at -102 dBm

SPECS ON THE DIGI XBEE CELLULAR LTE MODEM

- Deep Sleep Mode draws 10 UA
- Supply Voltage 3.3-5.5V
- Transmit Current around 530 mA at 3.3V

MICROPROCESSOR PROS AND CONS

Pros

- High Clock Speed
- Easily Programmable
- Low Power Consumption
- Small in size

Cons

- More expensive than a microcontroller
- External Components
- Cannot be used in compact systems

MICROCONTROLLER PROS AND CONS

Pros

- Small in size
- Reduced cost
- Low power consumption
- Can be used in compact systems
- Power save mode
- Open source

Cons

- Lower clock speed
- Limited I/O
- Limited code space

MICROCONTROLLER VS MICROPROCESSOR TRADE STUDY

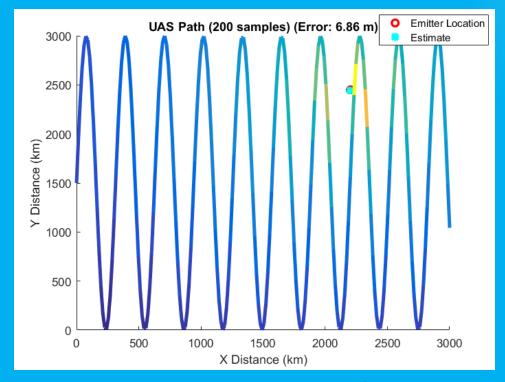
Metric	Weight	Driving Requirement	Rational
			The board chosen must have a speed
Clock Speed 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2			high enough to complete all necessary
	0.2		calculations and give correct outputs
		DK 3.3.1, DK 3.3.2, FK 7	before the next set of measurements is made
	(less than 1 second)		
			It is important to have a board that can be
Ease of Use	0.2	N/A	easily modified for changing algorithms and the
Ease of Use	0.2	IN/A	language used must be easy to understand by the
			members of the sub-system
Programmability	0.2	FR 9.0, DR 9.3, DR 9.5,	The board's code must be easily changeable based on
Flogrammability	0.2	DR 9.5.1, DR 9.5.2	changes made to both the localization and flight algorithm
		FR 9.0, DR 9.3, DR 9.5,	The board chosen must have enough memory and
Memory, RAM, ROM, I/O	0.1	DR 9.5.1, DR 9.5.2	RAM to store all required data for an entire test,
		DK 3.3.1, DK 3.3.4	which will last at least an hour

MICROCONTROLLER VS MICROPROCESSOR TRADE STUDY CONTINUED

Metric	Weight	Driving Requirement	Rational		
		FR 9.0, DR 9.3, DR 9.5,	The board chosen must have enough memory and		
Memory, RAM, ROM, I/O	0.1	DR 9.5.1, DR 9.5.2	RAM to store all required data for an entire test,		
		DK 7.5.1, DK 7.5.2	which will last at least an hour		
			The operational payload must have a lifespan of		
Power Required	0.1	DR 11.2.1	24 hours, so every component must have the		
			smallest power consumption possible		
			Since there is so many electrical components inside		
			the payload structure it is likely that high temperatures		
Overheat Temperature	0.1	DR 10.5	could be an issue. A higher operating temperature range		
Overneat temperature	0.1	DK 10.5	of the board components allows for more design		
			flexibility of the structure and reduces the odds of		
			overheating during testing		

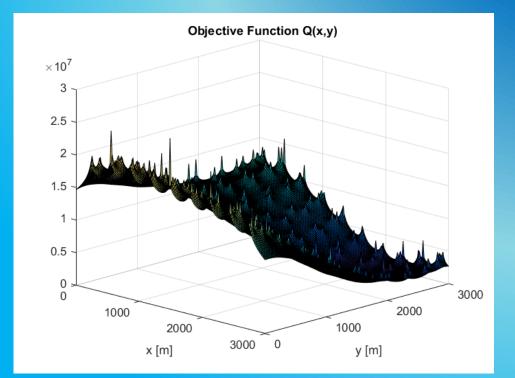
MICROCONTROLLER VS MICROPROCESSOR TRADE STUDY RESULTS

- Microcontroller will be chosen based on the results of the trade study.
- MCU is cheaper than an MPU.
- MPUs are faster on their own, but with external components, they are slower than an MCU.


Metric	Weight	MCU	MPU
Clock Speed	0.2	3	5
Ease of Use	0.3	5	3
Programmability	0.2	5	1
Memory, RAM, ROM, I/O	0.1	3	5
Power Required	0.1	4	5
Heat generated	0.1	3	5
TOTAL	1.0	4.2	3.2

MICROCONTROLLER VS MICROPROCESSOR TRADE STUDY RESULTS

- MCUs are easier to use than an MPU.
- All MCUs are programmable.
- Not all MPUs are programmable.
- Stand alone, MPUs use less power than an MCU, but when the additional components are added it tends to use more power than an MCU.


Metric	Weight	MCU	MPU
Clock Speed	0.2	3	5
Ease of Use	0.3	5	3
Programmability	0.2	5	1
Memory, RAM, ROM, I/O	0.1	3	5
Power Required	0.1	4	5
Heat generated	0.1	3	5
TOTAL	1.0	4.2	3.2

EVIDENCE OF FEASIBILITY: METHOD ALGORITHM- LOCALIZATION USING PDOA

Simulated trajectory of UAS with +/- 10 meter random error in location measurements

In this example, 200 samples are taken along the UAS path, giving an estimation error of only 6.86 meters.

Objective function provides a likelihood for each (x,y) coordinate on the grid

The coordinate that minimizes this function is where the algorithm estimates as the RFI source location

NONLINEAR LEAST-SQUARES CURVE-FITTING

• The distance to the receiver can be estimated using nonlinear least-squares curve fitting. If we assume an unknown transmitter location at position (x,y) on a finite search grid, we can use the free space loss principle from the previous slide. The space loss coefficient α is determined by obstructions and ground reflections in the environment.

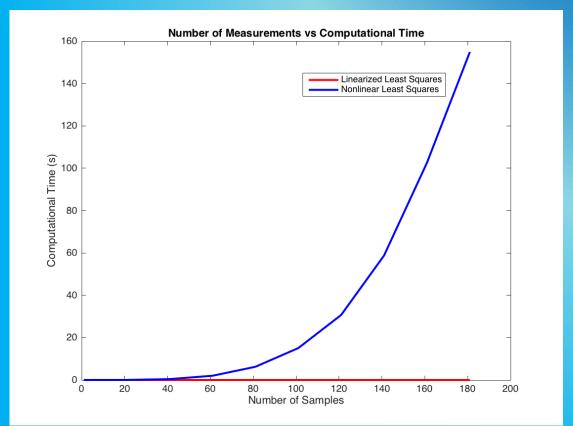
$$P_{12} = P_1 - P_2 = 10\alpha \log_{10}\left(\frac{d_2}{d_1}\right) \qquad \qquad P_{12} = 5\alpha \log_{10}\left[\frac{(x-x_2)^2 + (y-y_2)^2}{(x-x_1)^2 + (y-y_1)^2}\right]$$

 The objective function Q measures the difference between the actual measured power between two grid points and the predicted power difference between two grid points.

$$Q(x,y) = \sum_{k$$

 The (x,y) grid point where the objective function Q is minimized is the estimated transmitter location

LINEAR LEAST-SQUARES CURVE-FITTING


- In order to reduce computation time for localization, the objective function Q can be linearized by comparing every measurement to the very first measurement.
- The following equation can be solved analytically for point (x,y,z) assuming that the power measurement and corresponding grid coordinates are known.

$$2(x_l - x_1)x + 2(y_l - y_1)y + \left(P_l^{-\frac{2}{\alpha}} - P_1^{-\frac{2}{\alpha}}\right)z = r_l^2 - r_1^2, \qquad 1 < l \le N,$$

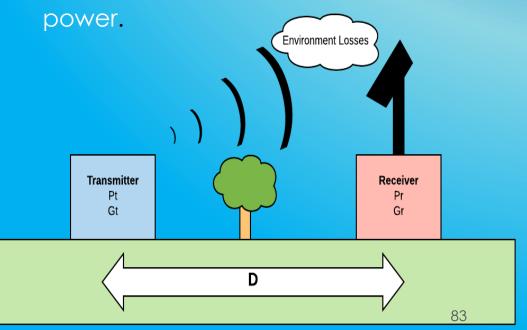
 Where index I defines every grid location that the UAS travels through and every power measurement taken

COMPUTATIONAL TIME COMPARISON LINEAR VS NONLINEAR LEAST SQUARES

- The final algorithm will most likely need to evaluate hundreds of times more samples
- 300 samples brought computational time up to over an hour for the nonlinear model, and MATLAB became unresponsive when the simulation was run with 100,000 samples.

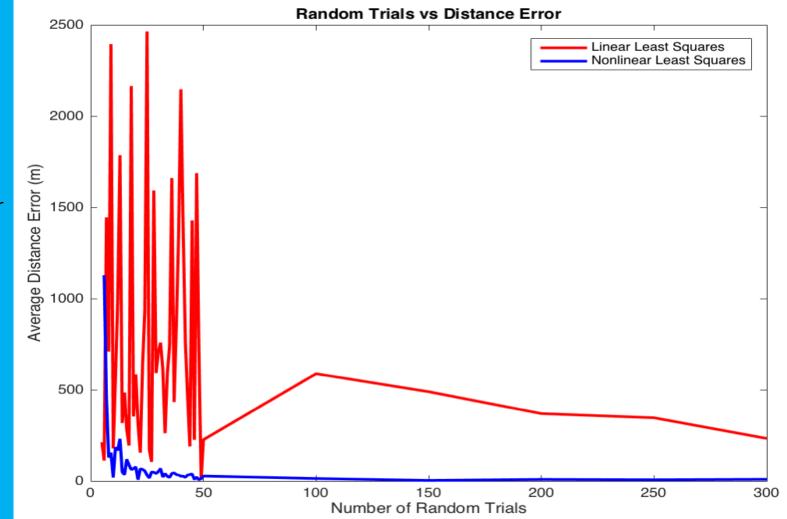
SIGNAL ATTENUATION IN FREE SPACE

• The path-loss for a given environment can be approximated by:


 $D^{-\alpha}$

Where α is the path-loss exponent.

- Ideally, signal intensity decreases proportional to the inverse square of distance between transmitter and receiver in threedimensional space. ($\alpha = -2$)
- Factors such as noise interference, ground reflection, obstacles, and imperfect antenna gains can increase signal attenuation.


$$\frac{P_r}{P_t} = G_t G_r \frac{\lambda^2}{(4\pi)^2 D^{-\alpha} L}$$

 α can be determined by measuring actual signal attenuation in the test environment with known transmitter/ receiver locations and known transmitter signal

LOCALIZATION ACCURACY

- Localization Accuracy is shown here for both the linear and nonlinear model
- The linear model is highly inaccurate at low number of trials
- The nonlinear model is very accurate even at low sample numbers

AUTOPILOT TRADE STUDY METRICS

Table 1: Metrics for Autopilot Trade Study									
Metric	Weight	Driving Requirements	Description and Rationale						
Open-	0.3	DR 6.2, DR 7.1	Extensive modifications will be re-						
source			quired to support flying without GPS,						
			and the autopilot software must be able						
			to integrate with these changes. Using						
			a 'black box' will increase the difficulty						
			of modifying the code.						
Safety Fea-	0.1	DR 6.2, FR 5	The UAS must have certain failsafes, al-						
tures			lowing the UAS to be operated safely,						
			minimizing unnecessary risks, and com-						
			plying with all FAA regulations.						
Software	0.2	DR 6.2, DR 7.1, DR	Support from community or manufac-						
Complex-		8.1	turer will be crucial to the success of						
ity			the project, so choosing an autopilot						
			with available resources will be advan-						
			tageous. Many of the modifications will						
			be difficult to implement, and it is cru-						
			cial for the team to be able to under-						
			stand and modify the code base.						
$\widetilde{Telemetry}/$	0.2	DR 7.1, DR 7.2	In order to fly without access to GPS						
Sensor			data, the software must be able to in-						
Capability			terface with multiple IMUs and anten-						
			nae, allowing for communication with a						
			ground station and sensing where the						
	0.0		UAS is when there is no reliable data.						
Cost of	0.2	\mathbf{Budget}	The project must be within budget.						
compatible									
hardware									

AUTOPILOT TRADE STUDY METRICS AND RESULTS

	Table 2: Explanation of Metrics											
Metric	1	2	3	4	5							
Open-	Open source	N/A	Not open-source	N/A	Open-source							
source			but readily modifiable		and readily modifiable							
Safatas Ess	0 elements of:	1 element	2 elements	3 elements	4 elements							
Safety Fea-		1 element	2 elements	5 elements	4 elements							
tures	(Geofencing,											
	Failsafe pro-											
	cessor, Loss of											
	signal, Obstacle											
	avoidance)											
Software	Written in	N/A	N/A	N/A	Written in							
Complex-	languages not				C/ C++/							
ity	known to any				MATLAB							
	team members				throughout							
Telemetry	Cannot in-	Can interface	Can interface	Can interface	Can interface							
/ Sensor	terface with	with camera	with antenna	with IMUs and	with any nec-							
, Capabili-	any external			antennae	essary IMUs,							
ties	hardware				antennae, opti-							
					cal flow sensors,							
					etc.							
Cost of	Prohibitively	Very expensive	Moderately ex-	Inexpensive (<	Free							
compatible	expensive	(\$300 - \$500)	pensive $(\$100 -$	\$100)								
hardware	(\$500+)	(\$500 - \$000)	\$300)	φ±00)								

Table 3: Trade Study Results: Autopilot

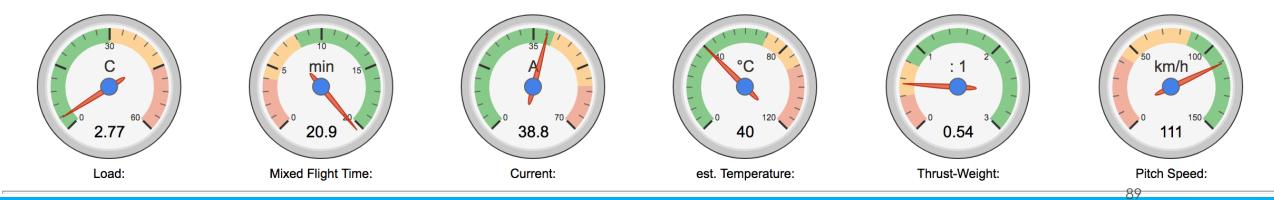
Metric	Weight	MicroPilot	PX4	ArduPilot	Disco
Open-source	0.30	5	5	5	1
Safety Features	0.10	5	4	4	3
Software Complexity	0.20	3	5	5	1
Telemetry/ Sensor Capabilities	0.20	5	5	5	3
Cost of Hardware	0.20	1	3	4	5
TOTAL	1.0	3.7	4.5	4.7	2.4

LOCALIZATION TRADE STUDY METRICS AND RESULTS:

Table 22. Localization Method: Trade Study Metrics												
Metric	1	2	3	4	5							
Design Simplicity (hours)	Impossible	200-300	100-199	50-99	49 >							
Potential Localization Ac-	Cannot Local-	Extremely	Some Noise	Hardly Sus-	Not Suscepti-							
curacy	ize	Susceptible to	Interference	ceptible to	ble to Noise							
		Noise		Noise								
Hardware Cost/ Require-	>\$800	\$400-\$799	\$300-\$499	\$150-\$299	\$0-\$149							
ment												
Power Measurement Capa-	NOT Power	N/A	N/A	N/A	Power Sensor							
bility	Sensor Capa-				Capable							
	ble											
Ability to Interface with	Impossible to	Difficult to In-	Possible to In-	Easy to Inte-	Highly Com-							
UAS and Payload	Integrate	tegrate	tegrate	grate	patible							

Table 23. Trade Study Results: Localization Method

Metric	Weight	TDOA	AoA	PDOA	Triangulation
Design Simplicity	0.20	5	2	5	2
Potential Localization Accuracy	0.10	3	4	3	4
Hardware Requirement/Cost	0.25	4	1	5	1
Power Measurement Capability	0.20	5	5	5	1
Ability to Interface with UAS and Payload	0.25	2	2	5	1
TOTAL	1.0	3.80	2.55	4.80	1.50


LOCALIZATION TRADE STUDY

Consideration	Weight	Driving Requirement	Rationale
Design Simplicity	0.20	DR 9.4	Design simplicity has large implications for on- board processor power required and design time for the localization algorithm. The hardware available for use with the algorithm is limited by payload design requirements, and simplicity would allow for integration with the payload hard- ware and UAS software, which is stated in DR 9.4.
Localization Accuracy	0.10	DR 9.2.1	The accuracy of location is important for the suc- cess of the project, however, there are many meth- ods that will provide high accuracy with many other drawbacks. DR 9.2.1 states the necessity of signal localization, and the degree of accuracy
Hardware Requirement/- Cost	0.25	N/A	The cost of hardware is a consideration for this method because different methods of localization require different hardware interface. It is stated that the algorithm must utilize hardware from the payload only, so additional hardware will add cost and mass to the payload design.
Power Measurement Ca- pability	0.20	DR 7.2, 9.3	Design Requirement 9.3 states that the localiza- tion algorithm must create a power profile of the signal source. The localization method must also support power measurements, preferably with no extra hardware requirements.
Ability to Interface with UAS and Payload	0.25	DR 9.1, DR 9.4, DR 9.5	The algorithm will be designed for use with the UAS system and payload, and must be able to integrate with hardware and software that is available and compatible with the payload and UAS.

Table 21. Considerations and Weighting for Localization Method Trade Study

RECUV Talon eCalc Screenshots

General	Model Weight: 3500 g incl. Drive \$ 123.5 oz	# of Motors: 1 (on same Battery)	Wing Area: 54.5 dm ² 844.8 in ²	Drag: coeffcient ↓ 0.027 Cd	Cross Section: 8.1 dm ² 125.6 in ²	Field Elevation: 1609 m ASL 5280 ft ASL	Air Temperature: 21 °C 70 °F	Pressure (QNH): 900 hPa 26.58 inHg
Battery Cell	Type (Cont. / max. C) - charge state: LiPo 14000mAh - 30/45C	Configuration: 3 S 1 P	Cell Capacity: 1400(mAh 1400(mAh total	max. discharge: 85% ♦	Resistance: 0.001 Ohm	Voltage: 3.7 V	C-Rate: 30 C cont. 45 C max	Weight: 844 g 29.8 oz
Controller	Type: CC Phoenix Edge HV 80	Current: 80 A cont. 80 A max	Resistance: 0.001 Ohm	Weight: 125 g 4.4 oz	Wire extension battery: AWG10=5.27mm ² \$	Length: 0 mm 0 inch	Wire extension motor: AWG10=5.27mm ² \$	Length: 0 mm 0 inch
Motor	Manufacturer - Type (Kv) - Cooling: E-flite + - Power 25B (1250) + medium + search	KV (w/o torque): 1250 rpm/V Prop-Kv-Wizard	no-load Current: 2 A @ 10 V	Limit (up to 15s): 58 A 🛊	Resistance: 0.02 Ohm	Case Length: 54 mm 2.13 inch	# mag. Poles: 14	Weight: 183 g 6.5 oz
Propeller	Type - yoke twist: APC Electric E	Diameter: 10 inch 254 mm	Pitch: 6 inch 152.4 mm	# Blades: 2	PConst / TConst: 1.08 / 1.0	Gear Ratio:	Flight Speed: 0 km/h 0 mph	calculate

RECUV Talon eCalc Screenshots

57

64

72

80

88

96

100

7200

8100

9000

9900

10800

11700

12176

8.1

11.4

15.6

20.7

26.8

34.2

38.8

11.1

11.1

11.0

11.0

11.0

11.0

11.0

89.4

125.8

171.3

227.0

294.2

374.0

423.8

Remarks:														
Battery		Motor @ Optimu	m Efficiency	Motor @ Maxin	num	Propeller			Total Drive			Airplane		
Load:	2.77 C	Current:	31.49 A	Current:	38.80 A	Static Thrust		1884 g	Drive Weig	nt: 3	124 g	All-up We	ight:	3500 g
Voltage:	10.96 V	Voltage:	10.96 V	Voltage:	10.92 V			66.5 oz		11	0.2 oz			123.5 oz
Rated Voltage:	11.10 V	Revolutions*:	12418 rpm	Revolutions*:	12176 rpm	Revolutions*		12176 rpm	Power-Wei	ght:	123 W/kg	Wing Loa	d:	64 g/dm²
Energy:	155.4 Wh	electric Power:	345.0 W	electric Power:	423.8 W	Stall Thrust:		1216 g			56 W/lb			21 oz/ft ²
Total Capacity:	14000 mAh	mech. Power:	301.5 W	mech. Power:	369.4 W			42.9 oz	Thrust-Wei	ght: O	.54 : 1	Cubic Wir	ig Load:	8.7
Used Capacity:	11900 mAh	Efficiency:	87.4 %	Efficiency:	87.2 %	avail.Thrust (2) 0 km/h:	1884 g	Current @	max: 38	.80 A	est. Stall S	Speed:	43 km/h
min. Flight Time:	18.4 min			est. Temperatu	re: 40 °C	avail.Thrust (2) 0 mph:	66.5 oz	P(in) @ ma	x: 43	0.7 W			27 mph
Mixed Flight Time:	20.9 min				104 °F	Pitch Speed:		111 km/h	P(out) @ m	ax: 36	9.4 W	est. Spee	d (level):	102 km/h
Weight:	2532 g				P			69 mph	Efficiency () max: 8	5.8 %			63 mph
	89.3 oz			Wattmeter read Current:	aings 38.8 A	Tip Speed:		583 km/h	Torque:	0	.29 Nm	est. Spee	d (vertical):	- km/h
				Voltage:	10.96 V			362 mph		0	.21 lbf.ft			- mph
				Power:	425.2 W	specific Thru	st:	4.45 g/W				est. rate o	f climb:	5.8 m/s
				Fower.	425.2 VV			0.16 oz/W						1135 ft/min
share											add to	>> Dow	nload .csv (0)	<< clear
						otor Partial Loa								
Propeller	Throttle	Current (DC)	Volage (-			ist	Spec. Thrust		Speed	Speed	. ,	Mo	otor Run Time
rpm	%	A		V	W	% g	oz	g/W c	z/W km/	n mph	km/h	mph		(85%) min
1800	14	0.3		11.1	3.1	38.4 41	1.5	13.3).47 1	6 10	-	-		2549.5
2700	21	0.6		11.1	7.0	57.5 93	3.3	13.2	0.47 2	5 15	-	-		1130.9
3600	28	1.2		11.1	13.7	69.4 165	5.8	12.0	0.42 3	3 20	-	-		575.7
4500	35	2.2		11.1	24.3	76.6 257	9.1	10.6	0.37 4	1 26	-	-		325.0
5400	42	3.6		11.1	39.8	80.9 371	13.1	9.3	0.33 4	31	-	-		198.7
6300	49	5.5		11.1	61.1	83.6 504	17.8	8.3	0.29 5	3 36	-	-		129.2

85.3

86.4

87.0

87.4

87.5

87.5

87.2

659

834

1029

1245

1482

1739

1884

23.2

29.4

36.3

43.9

52.3

61.4

66.4

7.4

6.6

6.0

5.5

5.0

4.7

4.4

0.26

0.23

0.21

0.19

0.18

0.16

0.16

66

74

82

91

99

107

111

41

46

51

56

61

66

69

55

68

75

83

91

98

102

34

42

47

52

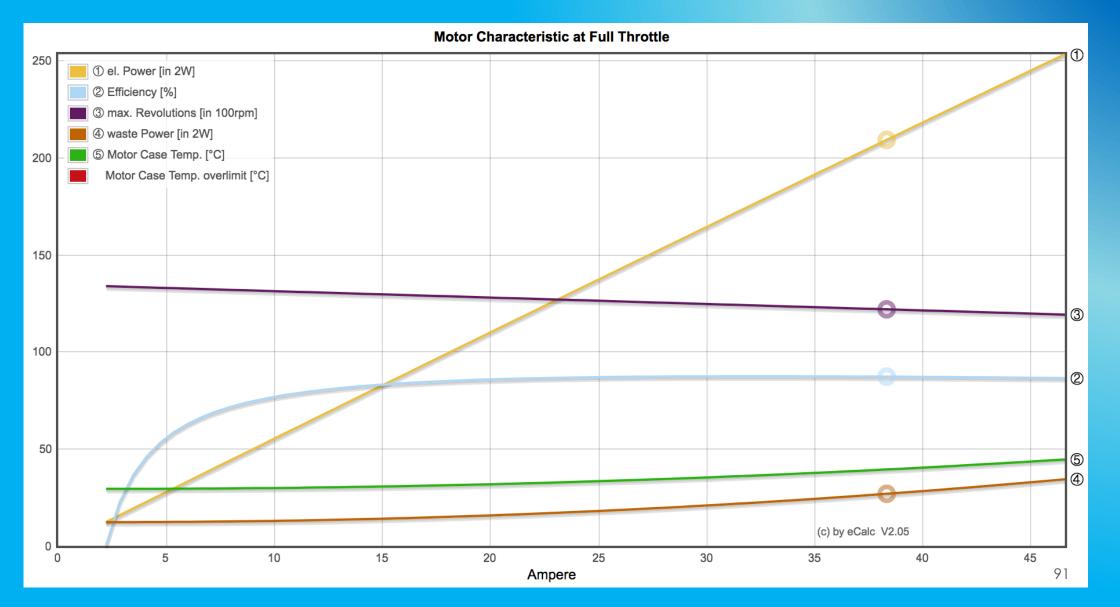
56

61

63

20.9 90 18.4

88.2

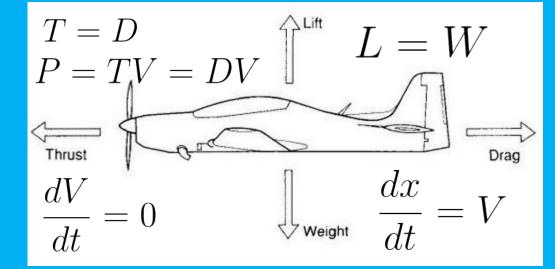

62.6

45.9

34.6

26.6

RECUV Talon eCalc Screenshots



UAS Model

Foundational Questions

- 1. Can the selected UAS platform achieve a 60-minute flight time? Which airframes can/can't?
- 2. What is the upper limit of endurance for our UAS platform?
- 3. How can we optimize for minimum power consumption onboard the UAS?
- 4. How much will the UAS weigh given airframe and electronics? How heavy does the battery need to be? How much power is required?

UAS Model - Overview

Assumptions

E = 63 min (inc. 5% buffer)

Worst-case headwind is 10 m/s

Steady, level flight throughout

Battery discharge depth is 85%

Overall system efficiency is 85%

UAS Model - Overview

Equations	Quantity [Units]
$m_b = \frac{C_b}{\sigma}$	Battery Mass [kg]
$W = g(m_e + m_{elec} + m_{fp} + m_b)$	Total Weight [N]
$C_{D,0} = \sum_{i=1}^{N} k_i c_{f_i} S_{wet_i} / S_{ref}$	Parasite Drag Coefficient [none]
$P_{flight} = \frac{1}{2}\rho V^3 S C_{D,0} + \frac{W^2}{\frac{1}{2}\rho V} \left(\frac{1}{\pi e b^2}\right)$	Power Required For Steady, Level Flight [W]
$P_{true} = \frac{P_{flight}}{\eta_{overall}}$	Propulsion System Power Required for Steady, Level Flight [W]
$E = 3600\eta_{overall} \frac{V_b D_b C_b}{P_{flight}}$	Endurance [s]

UAS Model - Overview

Name	Variable	Value		N
Density	ρ [kg/m³]	1.047		\vee
Ning Area	S [m²]	0.545		Tı
Vingspan	b [m]	1.718		P
Efficiency Factor	e [%]	80		C
Propulsive Efficiency	$\eta_{ m overall}$ [%]	85		B
Battery Discharge Depth	D _b [%]	85	-/	T
Endurance	E [min]	63		
Capacity Density	σ [mAh/kg]	16600		

 V_b [V]

Battery Voltage

Still Need to Determine:

Name	Variable
Velocity	V [m/s]
True Power Req'd	P _{true} [W]
Parasite Drag Coeff.	C _{D,0} [none]
Battery Weight	W _b [N]
Total Weight	W [N]
Total Drag	D [N]

UAS Model

$$P_{flight} = TV = DV$$

$$P_{flight} = V(\frac{1}{2}\rho V^{2}S)(C_{D,0} + \frac{C_{L}^{2}}{\pi eAR})$$

$$C_{L} = \frac{W}{\frac{1}{2}\rho V^{2}S}$$

$$P_{flight} = \frac{1}{2}\rho V^{3}S\left(C_{D,0} + \frac{W^{2}}{(\frac{1}{2}\rho V^{2}S)^{2}}\left(\frac{1}{\pi eAR}\right)\right)$$

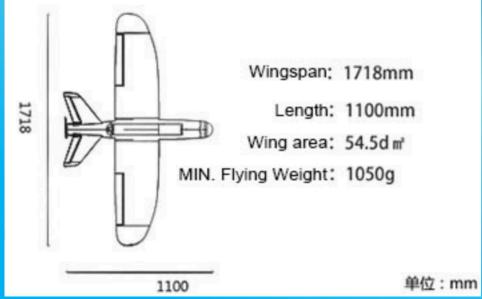
$$P_{flight} = \frac{1}{2}\rho V^{3}SC_{D,0} + \frac{W^{2}}{\frac{1}{2}\rho VS}\left(\frac{1}{\pi eAR}\right)$$

$$P_{flight} = \frac{1}{2}\rho V^{3}SC_{D,0} + \frac{W^{2}}{\frac{1}{2}\rho VS}\left(\frac{1}{\pi eb^{2}}\right)$$

$$P_{true} = \frac{P_{flight}}{\eta_{overall}}$$

Can find
$$V_{min,PR}$$
 by setting $\frac{\partial P_{flight}}{\partial V} = 0$

$$\frac{\partial P_{flight}}{\partial V} = 0 = \frac{3}{2}\rho V^2 S C_{D,0} - \frac{W^2}{\frac{1}{2}\rho V^2} \left(\frac{1}{\pi eAR}\right)$$


$$V_{min,PR} = \left[\frac{4}{3} \left(\frac{W}{S}\right)^2 \left(\frac{1}{\rho^2 C_{D,0}}\right) \left(\frac{1}{\pi e A R}\right)\right]^{\frac{1}{4}}$$

UAS Model

Parameters

Well-Known Parameters

- S Wing Area (given by manufacturer, easy to measure)
- AR Wing Aspect Ratio (easy to measure b (wing span) and then calculate)
- W Total Weight (easy to measure on a scale)
- E Endurance (easy to measure with a timer)
- Unknown Parameters, Fairly Easy to Measure
- ρ Air Density (Take temp + pres measurements)
 N Airspood (use total + static pressure from pitot)
- V Airspeed (use total + static pressure from pitot tube measurement)
- Unknown Parameters, Difficult to Measure
- CD,0 Parasitic Drag Coefficient (difficult to estimate and measure)
- e wing efficiency factor (difficult to measure/estimate)

Most Impactful Parameters

<u>Which</u> parameters will have the largest impact upon the Power Required (and hence endurance?)

- V -> V³ in first term, 1/V in second term (Which terms will dominate for given airframes? How much effect does a given velocity increase have on required power?)
- W -> W² in second term (how much of a power increase is required for a given weight increase?)
- b -> 1/b² in second term (does increasing wingspan (also increases weight) produce an appreciable decrease in required power?)
- η Overall efficiency of the propulsion system could be extremely low

Less important parameters

• C_{D,0} - wide range of values, could significantly impact power required

Drag Buildup

 $C_{D,0}$

Drag Buildup

$$C_{D,0} = \sum_{i=1}^{N} k_i c_{f_i} S_{wet_i} / S_{ref}$$

k is form factor c_f is skin friction coefficient S_{wet} is wetted area N = 3 (wing, fuselage, tail) $S_{ref} = S_{wing}$

$$c_f = \frac{0.455}{(\log_{10}(Re_L))^{2.58}}$$

$$Re_L = \frac{\rho V L}{\mu}$$

$$k = 1 + 2(t/c) + 60(t/c)^4 \text{ Wing and Tail}$$

$$k = 1 + 1.5(d/l)^{1.5} + 7(d/l)^3 \text{ Fuselage}$$

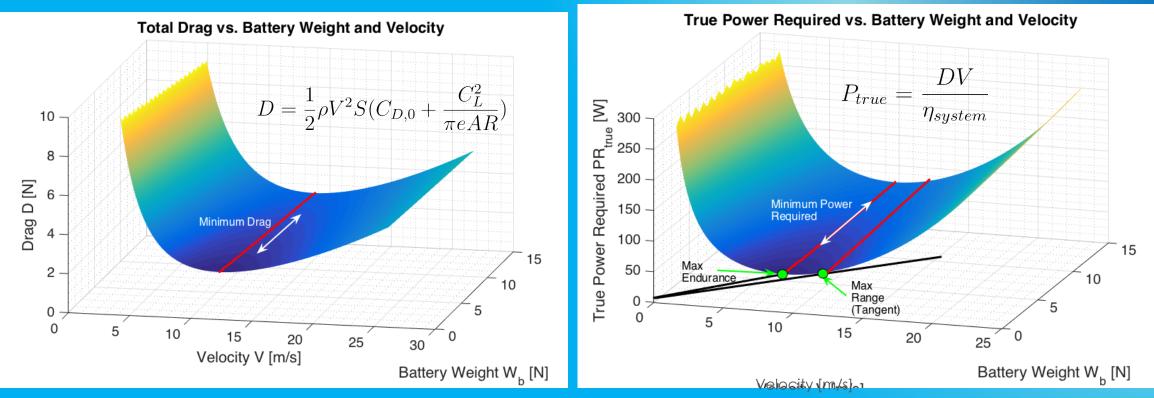
$$S_{wet} = 2(1 + 0.2(t/c))S_{ref} \text{ Wing and Tail}$$

$$S_{wet} = 2\pi(d/2)^2 + \pi dl \text{ Fuselage}$$

$$= C_{D,0,wing} + C_{D,0,fuselage} + C_{D,0,tail}$$

RECUV Talon Drag Buildup Screenshots from Excel

Design Conditions		Fuselage Properties		Plane Properties	
Speed [m/s]	15 m/s	d [m]	0.143	AR	5.41564037
Altitude [m]	1609	l [m]	1.1	e	0.8
Density [kg/m^3]	1.047	Swet [m^2]	0.526	CL	
Crud Factor	0.28			W [N]	32.8
Viscosity [Pa-s]	0.00001754			eta	0.85
		Tail Pro	perties		
Wing Pre	operties				
		c_r [m]	0.197		
MAC [m]	0.3175	c_t [m]	0.114		
t/c	0.1192	t/c	0.122		
b [m]	1.718	b [m]	0.273		
S [m^2]	0.545	N_fins	2		
Swet [m^2]	1.071	Swet [m^2]	0.174		

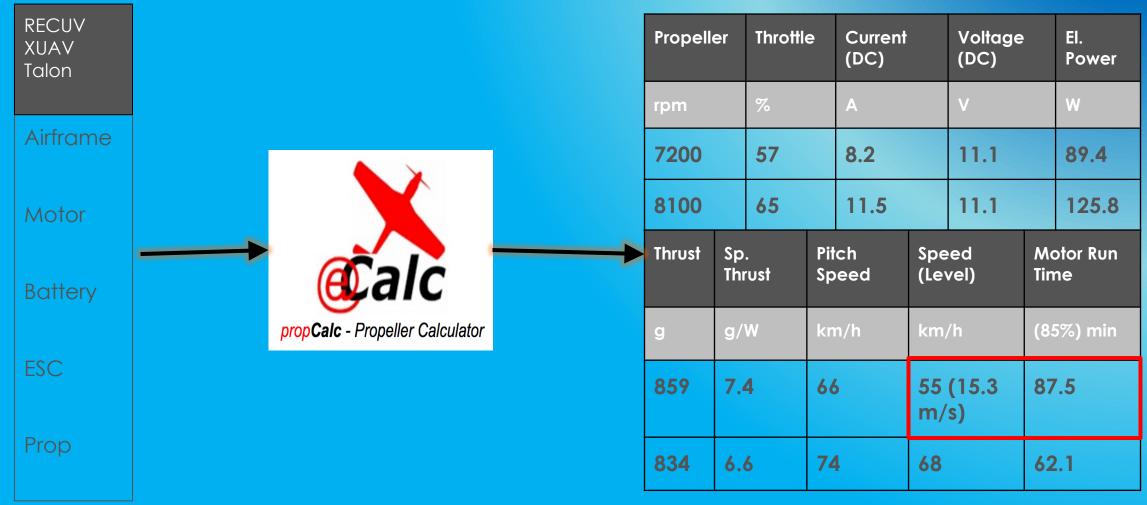

RECUV Talon Drag Buildup Screenshots from Excel

Velocity [m/s]	Velocity [KTAS]	Wing Re	Wing Cf	Wing FF	Wing f	Wing C_D0	Fuselage Re	Fuselage Cf	Fuselage FF	Fuselage f	Fuselage C_D0
0	0.00	0.0	#NUM!	1.25051313	#NUM!	#NUM!	0	#NUM!	1.08568725	#NUM!	#NUM!
1	1.94	18952.3	0.01070284	1.25051313	0.01433431	0.0263015	65661.3455	0.00787727	1.08568725	0.004501	0.008258707
2	3.89	37904.5	0.00898046	1.25051313	0.01202753	0.0220689	131322.691	0.00673687	1.08568725	0.00384938	0.00706309
3	5.83	56856.8	0.00814731	1.25051313	0.01091169	0.0200215	196984.036	0.00617387	1.08568725	0.00352769	0.006472828
4	7.78	75809.0	0.00761995	1.25051313	0.0102054	0.0187255	262645.382	0.00581331	1.08568725	0.00332167	0.006094807
5	9.72	94761.3	0.00724299	1.25051313	0.00970054	0.0177991	328306.727	0.00555346	1.08568725	0.0031732	0.005822378
6	11.66	113713.5	0.00695394	1.25051313	0.00931341	0.0170888	393968.073	0.00535297	1.08568725	0.00305864	0.005612176
7	13.61	132665.8	0.00672189	1.25051313	0.00900262	0.0165186	459629.418	0.00519121	1.08568725	0.00296621	0.005442581
8	15.55				0.00874492			0.00505652			0.005301366
9	17.49	170570.3	0.00636604	1.25051313	0.00852603	0.0156441	590952.109	0.0049417	1.08568725	0.00282364	0.005180991
10	19.44	189522.5	0.00622461	1.25051313	0.00833662	0.0152966	656613.455	0.00484204			0.005076502
11	21.38	208474.8	0.00610041	1.25051313	0.00817027	0.0149913	722274.8	0.00475427	1.08568725	0.00271654	0.004984483
12	23.33	227427.0		1.25051313		0.01472				0.00267185	0.004902485
13	25.27			1.25051313	0.00788963					0.00263164	0.004828697
14	27.21	265331.5		1.25051313			919258.837			0.00259515	0.004761747
15	29.16				0.00765976			0.00448347			0.004700571
16	31.10	303236.0	0.00564408	1.25051313	0.00755912	0.0138699	1050581.53	0.00442982	1.08568725	0.00253116	0.004644327
17	33.05				0.00746625			0.00438024			0.004592341
18	34.99	341140.5	0.00551044	1.25051313	0.00738013	0.0135415	1181904.22	0.00433419	1.08568725	0.00247651	0.004544064
19	36.93				0.00729993	0.0133944	1247565.56	0.00429125	1.08568725	0.00245198	0.004499044
20	38.88	379045.0	0.00539459	1.25051313	0.00722497	0.0132568	1313226.91	0.00425106	1.08568725	0.00242901	0.004456903
21	40.82				0.00715464		1378888.26			0.00240744	0.004417325
22	42.76		0.00529267			0.0130064		0.00417774			0.004380042
23	44.71				0.00702604			0.00414415			0.004344823
24	46.65	454854.0	0.00520195	1.25051313	0.00696697	0.0127834	1575872.29	0.00411234	1.08568725	0.00234975	0.00431147
25	48.60				0.00691096			0.00408214			0.004279812
26	50.54		0.00512039					0.00405342			0.004249699
27	52.48		0.00508255							0.00230044	0.004220999
28	54.43	530663.1		1.25051313			1838517.67	0.00399991			0.004193597
29	56.37		0.00501196				1904179.02	0.00397491			0.00416739
30	58.32				0.00666829			0.00395097			0.004142286
31	60.26				0.00662591		2035501.71		1.08568725		0.004118206
32	62.20		0.00491692					0.00390594			0.004095074
33	64.15				0.00654612	0.0120112		0.00388472			0.004072826
34	66.09		0.00485963					0.00386428			0.004051402
35	68.03				0.00647225			0.00384458			0.004030749
36	69.98	682281.1			0.00643729			0.00382557			0.004010817
37	71.92	701233.3			0.00640353		2429469.78				0.003991563
38	73.87	720185.6			0.00637092	0.0116898	2495131.13	0.00378945			0.003972944
39	75.81		0.00473335				2560792.47				0.003954926
40	77.75	758090.1	0.00471054	1.25051313	0.00630883	0.0115758	2626453.82	0.00375561	1.08568725	0.00214592	0.003937472

RECUV Talon Drag Buildup Screenshots from Excel

Tail Re	Tail Cf	Tail FF	Tail f	Tail C_D0	Total C_D0	CL	C_Di	C_D	D_0	D_i	D	PR	PR_true
0	#NUM!	1.25729201	#NUM!	#NUM!	#NUM!	#DIV/0!	#DIV/0!	#DIV/0!	#NUM!	#DIV/0!	#NUM!	#NUM!	#NUM!
16295.9521	0.01113808	1.25729201	0.00243595	0.00446964	0.04995818	114.96368	971.027735	971.077693	0.01425344	277.041495	277.055749	277.055749	325.94794
32591.9042	0.00932102	1.25729201	0.00203855	0.00374047	0.0420767	28.7409199	60.6892334	60.7313101	0.04801919	69.2603738	69.308393	138.616786	163.078572
48887.8563	0.00844455	1.25729201	0.00184686	0.00338874	0.03825027	12.7737422	11.9879967	12.026247	0.09821781	30.7823884	30.8806062	92.6418185	108.990375
65183.8084	0.00789066	1.25729201	0.00172573	0.00316647	0.03582308	7.18522997	3.79307709	3.82890017	0.16352951	17.3150935	17.478623	69.9144919	82.2523434
81479.7605	0.00749517	1.25729201	0.00163923	0.00300776	0.03408549	4.59854718	1.55364438	1.58772987	0.24312117	11.0816598	11.324781	56.6239049	66.6163587
97775.7127	0.00719217	1.25729201	0.00157296	0.00288617	0.03275157	3.19343554	0.7492498	0.78200137	0.33639372	7.69559709	8.03199081	48.1919449	56.6964057
114071.665	0.00694909	1.25729201	0.0015198	0.00278863	0.03167972	2.34619754	0.40442638	0.4361061	0.44288461	5.65390807	6.09679268	42.6775488	50.2088809
130367.617	0.00674765	1.25729201	0.00147574	0.00270779	0.03079025	1.79630749	0.23706732	0.26785757	0.56222012	4.32877337	4.89099348	39.1279478	46.0328798
146663.569	0.00657663	1.25729201	0.00143834	0.00263916	0.03003424	1.41930469	0.14799996	0.1780342	0.69408846	3.42026538	4.11435384	37.0291845	43.5637465
162959.521	0.0064287	1.25729201	0.00140599	0.00257979	0.02937965	1.1496368	0.09710277	0.12648242	0.83822343	2.77041495	3.60863839	36.0863839	42.4545693
179255.473	0.00629882	1.25729201	0.00137758	0.00252768	0.02880446	0.95011305	0.0663225	0.09512696	0.99439355	2.28959914	3.28399269	36.1239196	42.4987289
195551.425	0.00618342	1.25729201	0.00135234	0.00248137	0.02829293	0.79835889	0.04682811	0.07512104	1.16239464	1.92389927	3.08629391	37.035527	43.5712082
211847.377	0.00607983	1.25729201	0.00132969	0.0024398	0.02783345	0.68025846	0.03399838	0.06183183	1.34204447	1.63929879	2.98134326	38.7574624	45.5970146
228143.33	0.00598606	1.25729201	0.00130918	0.00240217	0.02741723	0.58654939	0.02527665	0.05269388	1.53317885	1.41347702	2.94665587	41.2531822	48.5331555
244439.282	0.00590055	1.25729201	0.00129048	0.00236785	0.02703747	0.51094969	0.01918079	0.04621827	1.7356486	1.23129554	2.96694414	44.504162	52.3578377
260735.234	0.00582209	1.25729201	0.00127332	0.00233637	0.02668882	0.44907687	0.01481671	0.04150553	1.94931723	1.08219334	3.03151057	48.5041692	57.0637285
277031.186	0.0057497	1.25729201	0.00125749	0.00230732	0.02636698	0.3977982	0.01162615	0.03799313	2.17405913	0.95862109	3.13268022	53.2555637	62.6536044
293327.138	0.00568259	1.25729201	0.00124281	0.00228039	0.02606845	0.35482617	0.00925	0.03531845	2.40975805	0.85506634	3.2648244	58.7668392	69.1374578
309623.09	0.00562011	1.25729201	0.00122915	0.00225531	0.02579038	0.31845895	0.00745105	0.03324142	2.65630596	0.76742797	3.42373392	65.0509445	76.530523
325919.042	0.00556171	1.25729201	0.00121637	0.00223188	0.02553037	0.2874092	0.00606892	0.03159929	2.91360198	0.69260374	3.60620572	72.1241144	84.8518992
342214.994	0.00550693	1.25729201	0.00120439	0.0022099	0.02528641	0.26068862	0.00499292	0.03027933	3.18155163	0.62821201	3.80976364	80.0050364	94.1235722
358510.946	0.0054554	1.25729201	0.00119312	0.00218922	0.02505681	0.23752826	0.00414516	0.02920197	3.46006609	0.57239978	4.03246587	88.7142492	104.369705
374806.899	0.00540679	1.25729201	0.00118249	0.00216971	0.02484012	0.21732265	0.00346993	0.02831005	3.74906162	0.52370793	4.27276955	98.2736996	115.616117
391102.851	0.0053608	1.25729201	0.00117243	0.00215126	0.02463509	0.19958972	0.00292676	0.02756184	4.04845905	0.48097482	4.52943387	108.706413	127.889898
407398.803	0.0053172	1.25729201	0.0011629	0.00213376	0.02444062	0.18394189	0.00248583	0.02692646	4.35818337	0.44326639	4.80144976	120.036244	141.219111
423694.755	0.00527578	1.25729201	0.00115384	0.00211714	0.02425579	0.17006461	0.0021249	0.02638069	4.67816331	0.4098247	5.087988	132.287688	155.632574
439990.707	0.00523633	1.25729201	0.00114521	0.00210131	0.02407977	0.15770052	0.00182716	0.02590693	5.00833104	0.38002949	5.38836052	145.485734	171.159687
456286.659	0.00519871	1.25729201	0.00113698	0.00208621	0.02391182	0.14663735	0.00157979	0.02549161	5.34862187	0.35336925	5.70199113	159.655752	187.830296
472582.611	0.00516277	1.25729201	0.00112912	0.00207179	0.02375131	0.13669879	0.0013729	0.02512421	5.69897401	0.32941914	6.02839315	174.823401	205.67459
488878.563	0.00512837	1.25729201	0.0011216	0.00205798		0.12773742	0.0011988	0.02479645	6.05932832	0.30782388	6.3671522	191.014566	
505174.515	0.0050954	1.25729201		0.00204475	0.02345035	0.11962922	0.00105144	0.02450179	6.42962811	0.28828459	6.7179127	208.255294	245.006228
521470.468		1.25729201	0.00110747	0.00203205	0.02330893	0.11226922	0.00092604	0.02423498	6.80981898	0.27054834	7.08036732	226.571754	
537766.42	0.00503334		0.00110082	0.00201985	0.023173	0.10556812	0.0008188	0.0239918	7.19984866	0.2543999	7.45424856	245.990203	
554062.372			0.00109442	0.00200811	0.02304218	0.09944955	0.00072663	0.02376881	7.59966682	0.23965527	7.83932209		
570358.324	0.00497589		0.00108825	0.00199679	0.02291613	0.0938479	0.00064708	0.02356321			8.23538131	288.238346	339.103936
586654.276		1.25729201	0.00108231	0.00198589	0.02279454	0.08870654	0.00057812	0.02337267	8.42847643	0.21376659	8.64224301	311.120748	366.02441
602950.228	0.00492247	1.25729201	0.00107657	0.00197536		0.08397639	0.00051811	0.02319526			9.05974376		
619246.18	0.00489711	1.25729201	0.00107102	0.00196518	0.02256369	0.07961474	0.00046569	0.02302938	9.29588003	0.19185699	9.48773702	360.534007	424.157655
635542.132		1.25729201	0.00106566	0.00195534	0.02245394	0.07558427	0.00041973	0.02287367	9.74394638				
651838.084	0.00484885	1.25729201	0.00106047	0.00194581	0.02234767	0.0718523	0.00037931	0.02272698	10.2015342	0.17315093	10.3746851	414.987404	488.220475

Evidence of Feasibility UAS Endurance – Drag Buildup


- $C_{D,0} = f(V, airframe)$
- $C_L = f(W, S, V)$

- Choose endurance optimization to reach 63+ minute flight time $E \propto 1/P_{true}$

UAS ENDURANCE – RECUV TALON

RECUV Talon D	rive Systen	n			
Component	Туре			Component	Weight [g]
Motor	E-Flite Po	ower 25BL (1250 Kv)		Battery Weight [g]	422 (x2)
Battery	Thunder (14000 r	r Power RC TP7000-3SH mAh)		Total Weight [g]	3343
ESC	Phoenix	Edge HV 80A		Motor Power Rating	700 (1250 Kv)
Propeller	APC 9x7	7 10x7		[W]	
	A	 RECUV operates XUAV Talon in long-endurance configuration with suite of 		Motor Power Rating [W]	700 (1250 Kv)
		 sensors and antennas Serves as excellent point of reference for PANAPOD 	f	Battery Capacity [mAh]	7000 3S 11.4 V (x2)
27		reference for RAMROD Talon-based UAS		Optimal Cruise Speed [m/s]	14-17
		60 min+ Flight time is feasible on this		Endurance [min]	60-90
		airframe			104

UAS ENDURANCE – RECUV TALON

See Backup Slides for List of RECUV Talon components

Ecalc Calculations also show feasibility of 60+ min flight time on RECUV Platform

UAS WEIGHT BREAKDOWN

Component	Mass [g]		
Talon	1050	Component	Mass [g]
Airframe		MicroZed	100
Battery	845	NT1065T	250
Payload	900	Casing	400
Additional Hardware	537	Battery	150
TOTAL	3,332	TOTAL	900