Course Overview

Goals

Both science and art can be described as being fundamentally based in our perception of the world around us. In science, clear observations lead to understanding, particularly of physics, which is a prerequisite to successful engineering. In art, creating and influencing our own and others’ perception of the work, whatever it may be, is the whole point. Art may also be defined as an execution of a vision; an instantiation of an idea, ‘making it so’. In this course we will focus on making the physics of fluid flow more available to perception, specifically, in a word, visible. You may also find that your perception of fluid flow in everyday life has been sharpened. In the process we will be creating both art and science.

Flow visualization is particularly suited to the interface between art and science. Many fluid physicists are motivated not only by the important scientific and engineering goals of their work, but also by a visceral fascination with their subject. Few scientists or engineers admit as much, but the existence of several venues for display of fluid flow art belies purely dispassionate motivations. Foremost among these venues is the Gallery of Fluid Motion [1], a poster and video competition which held in conjunction with the American Physical Society Division of Fluid Dynamics (APS-DFD) annual fall meeting. Gallery entries are judged “based upon criteria of scientific merit, originality, and artistry/aesthetic appeal.” Winners are published in a peer-reviewed journal, *Physics of Fluids*, and winners have been recently collected into a volume [2]. (Some winners were works from this course.) A recent New York Times article [3] about the Gallery attests to the potential for general impact on students and the public. Additional examples include the seminal *Album of Fluid Motion* [4], which can be found on the bookshelf of nearly every fluid dynamics researcher, and the recent *Multi-Media Fluid Mechanics CD-ROM* [5]. In each of these examples, the sheer beauty of fluid flow is revealed and acknowledged to some extent. Thus we hope to encourage engineering students to gain a deeper perception of fluid flow by capitalizing on this previously unacknowledged motivation, that is, for aesthetic and creative purposes. In the case of art and other non-engineering students, our goal is to introduce students to the simple beauty and fascination of fluid flow, as well as a bit of exposure to the discipline of documented experimentation.

Another goal of this course is to give you a chance to work with students from different disciplines. Art and engineering students have been trained with different approaches and values. In this course you will work with a range of colleagues, and discover your differences and similarities. Hopefully, you’ll see value in the range of perspectives.

It seems that imaging (including both still and motion photography/video) provides us with a crucial model of an art and a science that provides a bridge between the quite different worlds and roles of the artist and scientist. What is the role of photography in the cultural assimilation of technology and the popularization of experimental science? What is the future of an aesthetic of scientific imagery? Is an aesthetic of beauty appropriate or even desirable for the consideration of scientific imagery? If so, in what cases and why? Are there aesthetic approaches other than considerations of beauty that come into play in the processes of aesthetization ("museumization")? Fluid physics are responsible for a wide range of natural disasters; floods, tornadoes and wildfires, for example. Videos of such disasters are very popular, raising the question of an aesthetic of destruction. How can these aesthetic processes be characterized? And, finally, what are the relationships between art and science that we can learn from this course?

Course Format

The course will consist of lectures on visualization techniques, fluid physics, critique sessions, and a guest lecture. Emphasis will be placed on the production and critique of student images; there will be six assignments consisting of an image or video, and an accompanying report. A final showing will be produced in the Engineering Center Lobby and students will be encouraged to submit work to the American Physical Society’s Gallery of Fluid Motion annual competition, as well as other art/science competitions. There are no formal lab sessions; instead students are expected to treat assignments as they would for any other course. Team members are expected to make effort to meet with their teams outside of class. Students are expected to attend all critique sessions, and bring their laptops or smartphones to offer online (in D2L), anonymous comments on each image.

Course Content

This course will reveal the techniques of making laboratory and everyday fluid flows visible for both scientific and aesthetic purposes. Students will create images using photographic and video techniques, and document their work in written reports. Questions such as “what makes an image scientific? What makes an image art?” will be explored, but this is largely a technical course. Students will also gain technical expertise in a range of flow visualization and photographic techniques drawn from the following list. Quantitative applications and analysis will be considered where appropriate.

Partial lists:

Possible fluid media:
- liquid dye or particles in water
- smoke or fog in air
- water in air; sprays, clouds, free surface waves
- temperature or concentration gradients in air and water
- many combinations of everyday fluids such as milk, vegetable oil, alcohol, shampoo, etc.
 - **Caution, do not combine anything with a bleach product.**

Fluid phenomena:
- Wakes
- Jets
- Shear layers
- Vortex rings
- Buoyancy induced flows
- Surface tension driven flows

Two phase flows (fountains, bubbles, sprays)
- Laminar or turbulent flow
- Immiscible effects
- Combusting flows. **See posted safety guidelines for working with flames.**
- Ultrasonic driven flows (fountain/fog generators)

Visualization techniques:
- Laser sheet visualization
- Particle image velocimetry
- Stroboscopic volume visualization
- Schlieren/ shadowgraph techniques
- Oil flow techniques (wind tunnel applications)
- Thermal and pressure sensitive paints

Imaging techniques:
- Photography (digital or film, stereo or mono)
- Video/movies (analog, digital or film)
Post processing of above.

Safety Considerations: If you want to work with combustion, you must follow the combustion guidelines posted on the website. When working with household materials, you are pretty safe if you stick to personal hygiene (i.e. soaps and shampoos) and food products. If you are working with cleaning or medical products, or lab chemicals, you must discuss them with me first, and you may be required to submit a safety proposal.

Assignments, Assessment and Grading

Assignments will consist of images or videos paired with written technical reports, and must be submitted digitally via D2L. Videos must also be posted to Vimeo. Typically there are one or two individual assignments, two more individual cloud photography assignments and three team project assignments. All students are expected to provide written reports and self-assessments with their images, but expectations for the level of science discussed vary with the student’s standing. The required image and report formats are detailed in other documents which will be posted on the Flow Vis website.

Detailed grading of your work will not be done, although it will be checked for completeness and quality, and you will be expected to revise and resubmit your reports if requested. Instead, you will be motivated to achieve excellence by the actual meaning, context and quality of your work. Qualitative feedback will be provided publicly during class critique sessions, by your peers and the instructor. Your reports will be constructively critiqued by a teaching assistant. In addition, your work will be publicly archived on the high-visibility Flow Visualization site (just Google ‘flow visualization’). Employers in years to come may view this work when they Google your name.

Your grade for this course will be largely determined by your meeting the stated expectations for turning in all work and participation in critiques, and to a lesser extent by attendance at guest lectures, completing surveys, returning borrowed equipment, etc. In rare cases, substandard work such as poorly executed images and reports that grievously fail spell and grammar checks have resulted in lowered course grades.

Prerequisites

There are no formal prerequisites, but engineering students are encouraged to have completed a course in fluid mechanics, and fine arts students are expected to have completed a basic photography or film course. This course counts as a technical elective towards engineering degrees in the College of Engineering and Applied Science, and may be petitioned as studio or production credit towards photography and video degrees in the College of Arts and Sciences or as an upper division science credit towards any A&S degree.

Contact Information

Instructor: Prof. Jean Hertzberg
Email: Hertzberg@colorado.edu
Office: ECME 220, 303-492-5092
Personal Webpage: http://JeanBizHertzberg.com
Office hours will be determined (with your help) during the second week of classes. In general, you can stop by for help anytime, but I can't guarantee I'll be free. If my door is shut, that is a definite 'not available'. I read my e-mail two or three times a day, and can give quick response to short questions that way.

Teaching Assistant: TBD
Course Website

www.colorado.edu/MCEN/flowvis, or just Google ‘flow visualization’ or ‘flow vis’. Our site is #1 in much of the world! This site has all sorts of useful content, and is the permanent site where your work will be posted. The website is currently undergoing a major overhaul. If you are a WordPress expert willing to work on this let me know! However, assignments and critiques will be handled via the D2L site.

Textbooks

No textbooks are required for this course. Instead, students are expected to research background information online and in the archival technical literature (yes, you might have to go to the library!).

The following texts are recommended. All are available online from Amazon.com or other booksellers. I own most of these, and you can preview them in my office. Many are available in the Engineering and/or MathPhysics Libraries on campus. Additional texts are referenced on the course website. Several cost less than a pizza, and will serve you well both this semester and in years to come:

Schlieren and Shadowgraph Techniques by G.S. Settles. Springer Verlag, 2001. ISBN 3- 540-66155-7. An excellent reference for these techniques, with practical suggestions for both small and very large systems.

Cameras

Students are expected to provide their own imaging device (in lieu of a textbook). A digital camera of 10 Mpx or more is recommended. The camera should provide the option of manual focusing and some type of exposure control: shutter speed, aperture, ISO and preferably all
three. One of many examples is the Canon SC260 HS ($200). Photoshop is recommended for image processing, and is available for $210 for students from the UMC Bookstore. Gimp is also a fine open source photo editing program and is installed throughout the ITLL. For video editing any program you are comfortable with is OK; Windows Movie Maker, Camtasia (my favorite), Final Cut for Macs, or even iMovie. Windows Movie Maker is installed in the ITLL.

Publications
This course has attracted a great deal of interest from the fluid dynamics and engineering education and art/science communities. Student images from previous course offerings have been presented at conferences (garnering several awards), published in professional journals and on the web, with the instructors as co-authors and selected for traveling and permanent public display. Thus, students will be asked to submit high resolution digital files of their work and release a non-exclusive copyright to the instructor. No prints or hard copies will be required. Students who supply contact information will be kept informed of all future publications of their work. All images and reports produced for the course will be published on the course website. Videos may only use music to which rights have been acquired. A list of volunteer musicians will be provided if you’d like to collaborate with a musician on original music for your video. Acquiring rights to other music via stock libraries is easy and inexpensive. You will be expected to provide documentation of your music rights.

At the end of the semester, you will be offered the opportunity to donate proceeds from the sale of your work. The proceeds will be used to benefit this course. Please visit http://www.cafepress.com/FlowVis to see examples of how your work might be used.

Professionalism Expectations
A primary objective of the Mechanical Engineering Department is to prepare each of our students for careers in the engineering profession. As professionals, engineers must meet high standards of technical competence and ethical behavior. According to the Accreditation Board of Engineering and Technology (ABET) code of ethics, engineers uphold and advance the integrity, honor and dignity of the engineering profession by:

1. Using their knowledge and skill for the enhancement of human welfare;
2. Being honest and impartial, and serving with fidelity the public, their employers and clients;
3. Striving to increase the competence and prestige of the engineering profession.

The Department of Mechanical Engineering (ME) believes that it is essential for each of you to learn the professional behavior that will prepare you for your career after college. Therefore, in each mechanical engineering course you will be required to practice the professional behavior that will be expected by your future employers. This syllabus clearly outlines the ME policy regarding academic integrity and academic climate. These policies will be upheld in each of your courses throughout the mechanical engineering curriculum. However, we also expect that this culture of professionalism will pervade all of your University of Colorado experiences.

Academic Integrity
You will be asked to complete individual homework assignments in this course. Though you may work in groups to discuss and solve problems, it is expected that you will abide by the University of Colorado at Boulder honor code at all times. Therefore, you may not plagiarize images or reports or allow another student to plagiarize your work. Examples of plagiarism include: copying from a solution manual, copying from Internet sites, copying from previous academic year homework sets, and copying directly from classmates. However, in your reports for this course you can (and should!) use direct quotes and paraphrased information from the Internet and other published sources as long as you properly cite the source. If you have any doubt about how to
cite, or whether you are using sanctioned materials, please ask. Citation techniques will be covered in lecture. Plagiarism detection will be enabled in D2L, and you will be able to check the overlap of your reports with others.

Any instances of dishonesty on homework or tests will result in a minimum sanction for your first violation of the honor code of a zero score and an entry in your department file. Additional sanctions will be imposed by the ME Department for subsequent violations, possibly including expulsion from the ME program. You may contest any accusation according to the campus honor code system.

University of Colorado at Boulder Honor Code Policy:
All students of the University of Colorado at Boulder are responsible for knowing and adhering to the academic integrity policy of this institution. Violations of this policy may include: cheating, plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and threatening behavior. All incidents of academic misconduct shall be reported to the Honor Code Council (honor@colorado.edu; 303-725-2273). Students who are found to be in violation of the academic integrity policy will be subject to both academic sanctions from the faculty member and non-academic sanctions (including but not limited to university probation, suspension, or expulsion). Other information on the Honor Code can be found at http://www.colorado.edu/policies/honor.html and at http://www.colorado.edu/academics/honorcode/.

Mechanical Engineering Graduate Program Integrity Policy:
All students in the Mechanical Engineering Graduate Program are expected to uphold the Honor Code. The purpose of CU’s Honor Code is to secure an environment in which academic integrity is valued and students and faculty act accordingly. The following principles are to be upheld: honesty, trust, fairness, respect, and responsibility. Below are excerpts from the policy. More information on the policy can be found at http://www.colorado.edu/mechanical/programs/graduate/current/index.html.

If a faculty member suspects a student of cheating, the faculty member is expected to document the event(s) in writing. Documentation should be submitted to the Graduate Committee within two weeks of the event. The Graduate Committee will review the event(s) and documentation and recommend an academic sanction to the faculty member. This review can include an interview with the faculty member and/or the student. The recommended academic sanction should be implemented within four weeks of the event. Minimum sanctions could include a zero score for homework or a zero score for an exam. If the faculty member invokes an academic sanction, the faculty member shall communicate the decision to the student in writing and include a brief summary of the faculty member’s reasoning.

Any academic or non-academic sanction that has been applied to a student in the ME department must be documented in their department file. This includes sanctions and cases of cheating found in other programs and departments at the University of Colorado. The student’s advisor will also be notified when such an event has occurred and has been documented in their file.

Academic Climate

In Class Expectations:
It is our expectation that each of you will be respectful to your fellow classmates and instructors at all times. In an effort to create a professional atmosphere within the classroom, it is requested that you:

- Arrive to class on time
• Turn off your cell phone
• Limit use of your laptop computer to class purposes
• Put away newspapers and magazines
• Refrain from having disruptive conversations during class
• Remain for the whole class, or if you must leave early do so without disrupting others
• Display professional courtesy and respect in all interactions related to this class

Compliance with these expectations will assist us with the creation of a learning community and a high quality educational experience. The University of Colorado Classroom behavior policy will compliment the outlined classroom expectations. The University of Colorado Classroom Behavior policy is stated below.

University of Colorado Classroom Behavior Policy:
Students and faculty each have responsibility for maintaining an appropriate learning environment. Those who fail to adhere to such behavioral standards may be subject to discipline. Professional courtesy and sensitivity are especially important with respect to individuals and topics dealing with differences of race, culture, religion, politics, sexual orientation, gender, gender variance, and nationalities. Class rosters are provided to the instructor with the student's legal name. I will gladly honor your request to address you by an alternate name or gender pronoun. Please advise me of this preference early in the semester so that I may make appropriate changes to my records. See polices at http://www.colorado.edu/policies/classbehavior.html and at http://www.colorado.edu/studentaffairs/judicialaffairs/code.html#student_code

Discrimination and Harassment:
Discriminatory and harassing behavior will not be tolerated in the Department of Mechanical Engineering. A safe and inclusive environment will be created and maintained by the students and instructing faculty member. Students with concerns about discrimination or harassment actions should immediately contact the instructor, the Department Chair or their academic advisor, or contact the Office of Discrimination and Harassment (below).

Examples that may be considered harassment:
 A teaching assistant or instructor asking a student for a date.
 Displaying sexually explicit material in an academic setting (including laptop wallpaper).
 Persisting in asking a classmate for a date after being turned down.
 Using degrading terminology in referring to others, including peers.

The University of Colorado at Boulder policy on Discrimination and Harassment, the University of Colorado policy on Sexual Harassment and the University of Colorado policy on Amorous Relationships apply to all students, staff and faculty. Any student, staff or faculty member who believes s/he has been the subject of discrimination or harassment based upon race, color, national origin, sex, age, disability, religion, sexual orientation, or veteran status should contact the Office of Discrimination and Harassment (ODH) at 303-492-2127 or the Office of Judicial Affairs at 303-492-5550. Information about the ODH, the above referenced policies and the campus resources available to assist individuals regarding discrimination or harassment can be obtained at http://www.colorado.edu/odh

Out of Class Expectations:
Though many of the above stated policies address academic climate within the classroom, these policies should also be upheld outside of the classroom. As a member of the ME community you are expected to consistently demonstrate integrity and honor through your everyday actions. Furthermore, faculty and staff members are very willing to assist with your academic and personal needs. However, multiple professional obligations make it necessary for us to schedule our availability. Suggestions specific to interactions with faculty and staff include:
• Respect posted office hours. Plan your weekly schedule to align with scheduled office hours
• Avoid disrupting ongoing meetings within faculty and staff offices. Please wait until the meeting concludes before seeking assistance. Respect faculty and staff policies regarding use of email and note that staff and faculty are not expected to respond to email outside of business hours. Send emails to faculty and staff using a professional format. Tips for a professional email include:
 - Always fill in the subject line with a topic that indicates the reason for your email to your reader.
 - Respectfully address the individual to whom you are sending the email (e.g., Dear Professor Smith).
 - Avoid email, chat room or text message abbreviations.
 - Be brief and polite.
 - Add a signature block with appropriate contact information.
 - Reply to emails with the previously sent message. This will allow your reader to quickly recall the questions and previous conversation.

Accommodation of Disabilities or Religious Commitments

If you qualify for accommodations because of a disability, please submit to me a letter from Disability Services in a timely manner so that your needs can be addressed. Disability Services determines accommodations based on documented disabilities. Contact: 303-492-8671, Willard 322, and http://www.Colorado.EDU/disabilityservices

If you have a temporary medical condition or injury, see guidelines at http://www.colorado.edu/disabilityservices/go.cgi?select=temporary.html

Campus policy regarding religious observances requires that faculty make every effort to deal reasonably and fairly with all students who, because of religious obligations, have conflicts with scheduled exams, assignments or required attendance. In this class, attendance is required for critique sessions and guest lectures, so please check the posted schedule, and let me know of any conflicts within the first two weeks of the semester.
I, the undersigned, agree that I have read and understood the policies described in the syllabus for MCEN 4151/5151/ FILM 4200/ ARTF 5200 Flow Visualization. I hereby agree to comply with these policies.

PRINT NAME__________________________________

SIGNATURE____________________________________

DATE______________________________