Vorticity = rotation of a fluid element around its own middle
Vortical fluid = fluid with vorticity
Vortex = Vortical fluid (vortex core), often surrounded by irrotational (non-vortical) fluid

Today:
• Finish Clouds 1
• VORTICITY

http://www.youtube.com/watch?v=loCLkcYEWD4 3:30 - 6 min, vorticity in boundary layer, then irrotational flow around bathtub vortex.
http://www.youtube.com/watch?v=JI0M1gVNhbw Parody of NCFMF

Vortex and vorticity behaviors. Watch for them.

1. Vorticity is created only at boundaries
2. Vortex lines (along the vortex axis) must end at a surface, or form a loop. Can't end in the middle of a fluid.
3. Viscosity makes vorticity diffuse, spread. Will eventually make a vortex die.

Math & physics references:

Use right-hand rule to keep track of vorticity

Boundary layer. Vorticity (negative) is generated at the wall, diffuses outward via viscosity
Shear layer. Vortex sheet is unstable, rolls up into vortexes (Kelvin-Helmholtz instability), which then pair and form larger vortexes. This is how shear layers grow. *Hydrodynamic stability theory* can predict initial roll-up frequency, spacing.


4. Like-sign vortexes pair, unlike vortexes cancel.

Vortex rings

Self-induction: each part of the ring tries to get the rest of the ring to rotate around it. Net result: every part of the ring moves forward the same.

Strength of the self induction goes up as ring curvature tightens: small rings go faster

Elliptic rings: high curvature parts move ahead, increasing curvature on the straighter parts, which then speed up.

Major axis becomes the minor = axis switching.
Up to 7 switches have been seen.

Other interesting vortex ring behaviors:

Contrails are long parallel vortexes. Loop forms starting with takeoff, ends on landing

http://www.youtube.com/watch?v=j3wJal_AggY
Very short and fast example


http://www.regenpress.com/
The Crow Instability Process

‘An instant flurry would likely be the GO trigger to commence reactive control inputs.’

A trailing pair of wake vortices can merge into a series of vortex segments inclined more or less vertically. Hence, upon climb-out, a following aircraft at two-minute takeoff separation could encounter a preceding wake which is not a stable vortex pair, but which is in a state of breakdown or transition. Source: Brown, in NTSB Docket No. SA-522, Exhibit 2-X, Aug. 2002

http://www.iasa-intl.com/folders/the068event/587crows-1_files/crowinstab-1.jpg
Crow instability

http://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Contrail_with_crow_instability.jpg/200px-Contrail_with_crow_instability.jpg

Persistent spreading contrail

http://science-edu.larc.nasa.gov/contrail-edu/science.php


http://www.efluids.com/efluids/gallery/gallery_pages/pair_instability_page.jsp
Collision of vortex ring and granular layer

http://www.flamingtornado.com/ Fire art by Nate Smith
http://www.youtube.com/watch?v=fTlW1zucWn8 &list=UUj7HhOLDAW1fmoXhhPtnTEw&feature=c4-overview

BLEVE: Boiling Liquid Expanding Vapor Explosion

http://www.youtube.com/watch?v=UM0jtD_OWLU&feature=youtube_gdata_player.