Raise it, cool it adiabatically. Starting parcel.

Horizontal blue: Constant temperature; isotherm. Angle: SKew T
Angled blue: Dry adiabat. Lapse Rate. A dry parcel will follow this temperature line if cooled
Angle/curve green: Adiabatically
Angle/curve blue: Moist, saturated adiabatic lapse rate
Purple: Lines of constant mixing ratio; absolute humidity for saturation.
Heavy black: Right line is temperature profile. Left line is dew point
Light black: Adiabat starting at the top of the boundary layer

72469 DNR Denver

12Z 05 Feb 2011

University of Wyoming
Starting parcel

Raise it, cool it adiabatically (move up along the adiabat), perturb the system
Check it, is my parcel warmer or cooler than the actual neighboring parcels?
 i. Cooler; more dense, wants to sink again, go back to origin STABLE
 ii. Warmer; less dense, wants to keep going up! UNSTABLE

Can start at any point on the actual temperature line. Go parallel to the adiabats.
Choose dry adiabat (green) if below likely cloud level or wet (blue, saturated) if in a cloud.

Stable clouds = flat STRATUS type
Unstable clouds = puffy CUMULUS family

Atmosphere is all stable if CAPE = 0 Convective Available Potential Energy
Has unstable layers if CAPE > 0. Thunderstorms if CAPE > 500 or so.

Skew-T Times: 12Z, Feb 14 = ~6 am Feb 14 here
 00Z, Feb 15 = ~6 pm Feb 14 here

Where are clouds? Where temperature is close to dew point, i.e. where the
two heavy black lines come together.
Also, kink towards more steep in T line suggests clouds at that level.

Basics: http://www.theweatherprediction.com/thermo/skewt/
Skew T Mastery: https://www.meted.ucar.edu/loginForm.php?urlPath=mesoprim/skewt#

Skew-T download tips:
1. Choose correct date. 12z Feb X is the 6 am sounding, 00z X+
 1 is the 6 pm sounding for date X
2. Choose plot, not text
3. Will open in next browser tab

http://weather.uwyo.edu/upperair/sounding.html