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Abstract. Very high freguencies (5-10 Hz)
are recorded at Garm, Tadzhikistan (A~ 200 km),
near Toktogul, Kirgizia (A v600 km) and at
other close stations from intermediate depth
earthquakes in the Pamir-Hindu Kush region.

The seismic phase, S, is recorded with large
amplitudes and high frequencies at stations in
Pakistan and India from intermediate depth
earthquakes. Such high frequencies reguire
either extremely high average values of
(several thousand) or very high stress drops of
earthguakes (kilobars) or possibly both.
Regardless of the stress drops, we infer that

Q R 1000 along paths through a portion of the
mantle where Q is usually low. Thus these data
indicate a discontinuity, or marked thinning, of
the asthencsphere. BEven if Q were infinite,
the spectral content of the signals at Garm, in
addition, could also be interpreted as

evidence for relatively high stress drops for
the intermediate depth earthquakes. If Q is
equal to 3000, the highest calculated stress
drops are for events with depths between about
50 and 180 km and range from several tens to
several hundred bars.

Introduction

Intermediate and deep focus earthquakes
(h 7 70 km) at island arcs are usually
associated with descending slabs of oceanic
lithosphere. The planar inclined zones of
earthquakes are often used to map the cold part
of the lithosphere that has penetrated into
the asthenosphere within the last 10 to 20 m.y.
[Isacks et al., 1968; McKenzie, 1969]. These
narrow zones of earthquakes are usually
assoclated with regions of high seismic wave
velocities and low attenuation. Because of the
buoyancy of continental crust, however,
continental lithosphere is usually presumed to
be too light to descend very deeply into the
upper mantle. If this presumption is correct,
the intermediate depth earthquakes within
continental regions indicate the subduction of
oceanic lithosphere within the last 10 to 20 m.y.

Among the four intracontinental regiocns where
intermediate depth earthquakes occcur (Burma,
Pamir-Hindu Kush, Romania, and Spain) the Pamir-
Hindu Kush region is probably both the most
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active and the most thoroughly instrumented
(Figure 1). Intermediate depth seismicity occurs
along a nearly vertical zone TOO km long, and
beneath the Hindu Kush, abundant activity occurs
at depths between 200 and 300 km (Figures 1 and
2) [Lukk and Nersesov, 1970; Nowroozi, 1971].
On June 10, 1971, an earthquake occurred
approximately 360 km beneath the Hindu Xush.
This event is the deepest known to us in this
region. The seismic zone appears tc be asso-
ciated with a region of high seismic velocities
[Vinnik and Lukk, 1973, 1974], and attenuation
of seismic waves in the upper mantle of the
Pamir-Hindu Kush regicn appears to vary
laterally [Barazangl et al., 1975; Lukk, 1971].
Moreover, relatively high intensities are often
felt far from the epicenters of intermediate
depth earthquskes [Soboleva, 1968b]. Thus the
seismicity and wave propagation suggest an upper
mantle structure similar to that at island arcs.
The spectral content of seismic body waves is
controlled primarily by two causes: parameters
describing the source (seismic moment, source
dimension, stress drop, etc.) and attenuation.
Normally, one cause is assumed, and the other is
deduced from the observations: In the present
study we examine the spectral content of the
intermediate depth earthquakes and show that a
high-G (low attenuation) zone is probably
associated with the deep earthquake zone
regardless of the source parameters of the
earthquakes. We then interpret the spectral
content of the seismic waves as possible
evidence for relatively high stress drops for
the intermediate depth earthquakes regardless of
4§. Finally, we try to place more realistic
bounds on @ and on the stress drops by making
more reasonable assumptions about each and by
examining its effect on determinations of the
other.

Spectral Content of Seismic Waves From
The Pamir-Hindu Kush Region

Frequencies as high as 10 Hz are commonly
recorded with large amplitudes for both P and S
waves at stations in the Garm region from
earthquakes in the Pamir-Hindu Kush region
(Figures 1, 3 and 4) with depths from 50 to
300 km (Figures 3 and L). In fact, the largest
events are often heard at Garm. Thus frequencies
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Fig. 1. Map of region. Triangles are seismograph stations.

Circles mark epicenters

of earthquakes analyzed in this study. Open circles represent shallow events
(h < 50 km) and closed circles, deeper events.

in the audible range (~30 Hz) are radiated and
transmitted with large amplitudes. Eplcentral
distances are typically 200 to 300 km. Thus for
the deepest earthquakes the paths to Garm make
angles of about 45° with both the surface of
the earth and the planar seismic zone. In
general, S waves that traverse this depth range
of the mantle are rarely recorded by short-
periocd seismographs, and even when they are
recorded, they usually have frequencies of less
than 1 Hz. Only at island arc structures such
as those in Japan [Katsumata, 1960, Tsujiura,
1972; Utsu, 1966, 1971], Tonga [Barazengi et
al., 1972; Oliver and Isacks, 1967], New Zealand
[Mooney, 1970], and other locations are
frequencies as high as 3 tc 4 Hz commonly
recorded. To the best of our knowledge, only
in Japan have predominant frequencies as high
as 10 Hz been recorded [Tsujiura, 1972], but
this probably results from the limited band-
widths of the instruments at other arcs. In all
of these regions, such high frequencies are
considered strong evidence for a high-Q zone
penetrating the asthenosphere, and this
interpretation seems applicable to the Pamir-
Hindu Kush region also.

From the spectral content of the recorded
signals we can place a lcwer bound on the
average value of Q for the paths to the north.
Figure 4 shows ChISS spectra (see Appendix) for
several intermediate depth earthguakes in the
Pamir-Hindu Kush region recorded at Garm. For
an impulse of ground displacement the ChISS
spectrum increases linearly with frequency with
a slope equal to 2. In such a case, attenuation
or finite source dimensions will cause a peak
in the spectrum. Thus in the extreme cases,
where the earthquake radiated an impulse,
attenuation alone would shape the spectrum. If
we assume that attenuation will be described
by a factor, exp [-(7ft/Q)], where £ is
frequency and t is travel time, the shape of the
ChISS spectrum would be proportional to
8(f) = £2 expl-(7ft/Q)]. A maximum occurs when
d[das(f)/df] = 0 or approximately where
nft/Q@ ¥ 2. The peak in the ChISS spectrum of S
waves from events is often 10 Hz. As the travel
time is about T0 s, @ > 1000.

As the earthquakes surely do not radiate delta
functions, these are extreme lower bounds for Q.
Figure 5 shows examples of spectra corrected for
different high values of Q. In many cases, Q
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Fig. 2. Cross section of seismicity through
the Hindu Kush. Events located by Lukk and
Nersesov [1970] for 1966 between 36°N and 37°N
and between TO°E and T1°E are plotted on a
north-south profile. Size of symbols indicates
energy class: K = log energy (in joules), with
smallest (1) for K = 10 and largest (4) for

K 2 1L,

values of 1000 or 2000 lead to very high peak
frequencies in ChISS spectra, corresponding to
high corner frequencies of Fourier spectra and
therefore to stress drops of earthguakes larger
than 1 kbar (see below). As such high stress
drops, when based on spectral content, are
larger than those observed elsewhere for
intermediate depth events [e.g., Wyss and
Molnar, 1972], we infer that Q is probably even
higher than 2000. Since values of @ in the
asthenosphere are typically a few hundred or
less [e.g., Barazangi and Isacks, 1971], the
low-Q asthenosphere is apparently interrupted
or thinned in the Pamir-Hindu Kush region.

High predominant frequencies (n5 Hz) are also
recorded in the epicentral zone of the deep
earthquakes at stations in Khorog, Falzabad, and
other locations (Figure 1) [Lukk and Nersesov,
1970; ILukk, 1971]. Unfortunately, from these
seismograms it is difficult to measure higher
frequencies. Neverthéless, for either P or S,
when paths traverse the upper 250 km of the
mantle€, 5 Hz is an unusually high frequency.
Thus a high-Q zone is required for such paths
also.

At the station no. 1/4 near Toktogul,
Kirgizia (4L1.7°N, 73.2°E), some 600 km north of
the intermediate depth earthguekes the frequency
content of P and S waves from these earthquakes
is almost the same as that at Garm (Figures 6
and T). For these paths the average value of Q
must alsc be at least 1000 and probably is
greater. P and S waves to Toktogul probably

enter the horizontal lithosphere of the
Eurasian plate near the intermediate depth
events and travel through the lithosphere as
S,. Thus these data imply a continuity of the
lithosphere northward from the seismic zone.

Recordings of intermediate depth events by
temporary stations in Kirgizia, 700 tc 800 km
northeast of the intermediate depth Pamir-Hindu
Kush earthquakes, alsc show high predominant
frequencies (V5 Hz) [Nersesov et al., 1968].
These observations imply continuity of the
lithosphere in this direction. In contrast,
signals recorded by ChISS systems 900 to 1000 km
northeast of the seismic zone in Talgar (L3.2°N,
77.2°E) and in Novosibirsk (5L.9°N, 82.9°F,
where A% 2000 km) show considerably smaller
amplitudes and lower frequencies than those
recorded at Garm or at the temporary stations
in Kirgizia. S waves are clear only on
channels centered at freguencies less than
0.5 Hz, and ChISS spectra for P waves are peaked
near 1 Hz. If the source is assumed to radiate
an impulse, this peak corresponds to Q % 200.
Alternatively, assuming an infinite value of Q
for paths to Garm from a comparison of spectra
at Talgar and Garm, we estimate an upper limit
for the average Q for paths to Talgar of 390.

To the south, S, is transmitted with high
frequencies and large amplitudes by paths from
intermediate depth Pamir-Hindu Kush earthguakes
to stations in India and Pakistan (Figure 8)
[Molnar and OQliver, 1969]. Unfortunately, the
frequency response of the short-period instru-
ments of the Worldwide Standardized Seismograph
Network is peaked at approximately 1.7 Hz, and
frequencies higher than about 1.5 Hz are
difficult to recognize on the seismograms. 1In
eny case, it appears that the high-Q lithosphere
beneath Afghanistan and Pakistan is essentially
continuous with the earthquake zone.

The shape of the high-Q zone that penetrates
the asthenosphere is difficult to map, and we
defer discussion of it until after discussing
the source parameters of the earthquake.

The Spectral Content of Seismic Waves Radiated
By Pamir-Hindu Kush Earthquakes

Above we estimated a lower bound for Q, under
the assumption that the sources radiated
impulses. If, instead, we make an assumption
about the value of Q, then from the shape and
amplitude of the spectrum we may estimate
parameters describing the source, such as the
seismic moment, the source dimensicns, the
average displacement cn the fault, and the
stress drop. The low-frequency portion of the
spectrum determines the seismic moment,

M, = pAu, where p is the shear modulus, A is the
fault area, and u is the average displacement
[Aki, 1966, 1967].

Following Brune [1970], we assume that the
average source dimension of the fault, r, or the
radius of the equivalent circular fault, is
inversely proportional to a characteristic
fregquency f, which separates the low-frequency
portion from the high-frequency portion of the
spectrum. Brune [1970] considered the Fourier
spectrum of displacement and defined f, as the
corner frequency where an extrapolation of flat
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Kush region.
traces in lower figure.

low=frequency and decreasing high-frequency
portions of the spectrum intersect. For ChISS
spectra it is easier to define a peak frequency,
which we assume is approximately the corner

frequency for the corresponding Fourler spectrum.

Following Brune [19T70] and Wyss et al. [1971],
we assume that r = 2.34v/2nf,, where v is the
wave velocity in the source region. However, if
we recognize that our estimates of f_from ChISS
spectra may systematically differ from Brune's
original concept and that the stress drop

lTables 1l to 3 are available with entire article
on microfiche. Order from American Geophysical
Union, 1909 K Street, N. W., Washington, D. C.
20006. Document JT7-001; $1.00. Payment must
accompany order.

Seismograms recorded by ChISS at Garm for an intermediate depth event in the Pamir-Hindu
Band-widths of individual channels are shown.

Calibration signals shown for some

o = (7/16)/(Mg/r3), [Keilis-Borok, 1959]
depends on the cube of f,, there exists the
possibility of a systematic difference between
ocur estimates of AT relative to those studies
using Fourier spectra.

If we assume that @ is infinite, then the
shape of the observed spectrum can be used to
estimate the seismic moment, the peak frequency
f,» and therefore the stress drop (Tables 1 to
3 on miecreofiche).” As attenuation affects the
high frequencies more than the low frequencies
(Figure 5), corrections for attenuation will
probably not alter estimates of the moment but
will increase the peak frequency and therefore
the stress drop.

When, Q is assumed to be infinitely large
(qQ > 10L‘), at depths greater than 50 km, there
is no obvious variation with depth for the
calculated stress drops (Figure 9). A more
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obvious difference can be seen for events deeper
and shallower than about 50 km. For such a
comparison we analyzed spectra of both Pg and Sg
from several earthquakes with the same hypo-
central distances as the deeper events and
spectra of P and S waves from several earthquakes
in the Garm region with epproximately the same
magnitude range as the deeper events. For the
more distant shallow events, stress drops were
determined by assuming that Pg and Sg travel as
body waves. Although there is & large scatter

in both populations (Figure 9) the intermediate
depth earthquakes (h > 50 km) appear to have
higher stress drops than the shallow events. The
difference in the stress drops between the local
events and the deeper ones, however, is less
apparent than that between the distant shallow
events and the deeper ones. Hence with the
assumption of infinite Q, there is a suggesticn

2935

of higher stress drops for intermediate depth
events than for shallow ones, but the large
scatter in the estimates makes such an inference
only tentative.

For more reasonable values of Q this d4iffer-
ence becomes more apparent. First, we note that
a correction for attenuation will increase
estimates of stress drops for the distant
events more than for the local shallow ones and
thus render the difference between shallow and
intermediate depth events more apparent than is
shown in Figure 9. In addition, there is an
apparent increase of stress drop with seismic
moment. Because smaller earthguakes have
higher peak frequencies, asttenuation might
affect estimates of stress drops more for them
than for the larger earthquakes. If we compare
the stress drops of the larger deep earthguakes
with those of the local events and the larger

E=10.5y H=230 km, GARM,

Fig. 3b.
Pamir-Hindu Kush region.
signals are shown for some traces.

Seismograms recorded by ChISS at Garm for an intermediate depth event in the
Band-widths of individual events are shown.

Calibration
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1, on microfiche, for parameters of earthguakes).

velocity in microns per second.

distant events, the difference in calculated
stress drops between intermediate and shallow
events is more pronounced than that when all
events are considered (Figure 9). Thus we think
that attenuation does play a role in shaping
the observed spectra.

To explore this possibility, we corrected
the observed spectra at Garm end Toktogul for
attenuation by assuming various values of Q and
estimated stress drops (Figures 7 and 10). For
Q equal tc 2000 for S waves, calculated stress
drops of several events exceeded 1 kbar. TFor
calculated stress drops to be less than 1 kbar,
Q must be at least 3000.

Shape of High-Q Zone

We do not have unambiguous evidence that
tightly constrains the shape of the high-Q zone

5 10 20 40

ChISS spectra for several events in the Pamir-Hindu Kush region (see Table

Vertical scale is particle

that penetrates the asthenosphere. Because
ChISS spectra recorded at Garm (and at the
station near Toktogul) from many earthquakes
deeper than about 180 km, particularly from the
Hindu Kush, show lower frequencies than those
shown from events between about 50 and 180 km
[Khalturin et al., 1975], one could infer that
the high-Q zone is narrow near some portions
of the seismic zone., Paths from deeper events
in such areas to Garm and Toktogul would pass
through part of the low-Q zone. We cannot
eliminate conclusively this possibility, but we
think the evidence is more consistent with the
high-Q zone being broad and with the deeper
events radiating lower frequencies than events
between 50 and 180 lkm.

In general, the deeper events are recorded
with somewhat lower freguencies also at Falzabad,
Khorog, and other stations nearly directly above
the deep seismic zone, where Q is presumably
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highest [Lukk and Nersesov, 1970]. This
observation concurs with the suggestion that the
deeper events radiate lower frequencies and
therefore are associated with lower stress drops.
We note that in other regions, earthquakes in
the depth range 70 to 200 km appear to radiate
the highest freguencies [Wyss, 1970; Wyss and
Molnar, 1972].

The large S_ phases recorded in Pakistan and
in India from the deeper earthquakes and the
high frequencies recorded at Toktogul are most
easily understood if the high-Q zone surrounding
the earthquakes is broad. If the high-Q zone
were narrow, waves carrying high frequencies
would ascend vertically through the high-Q zone
before turning sharply so as tc travel horizon-
tally through the high-Q lithosphere. Such
paths do exist in other regions [Barazangi et
al., 1972; Isacks and Barazangi, 1973], but in
these regions the signals are guite small and
do not dominate the seismograms as they do in
Figure 8. Similarly, high intensities are often
observed at large distances from the deeper
events [Lukk and Nersesov, 1970; Soboleva,
1968b]. The isoseismal of highest intensity for
the November 14, 1937, earthquake (L ~ 200 km)
included Lahore, Pakistan, 600 km southeast of
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Soboleva [1968b] interpreted ancmalies in the
intensity distributions tc be a result of the
radiation patterns of the earthguakes, following
Utsu [1966] we think they imply the existence
of unusually high @ paths for seismic waves.

The intensity distributions and the amplitude
versus distance curves constructed from inter-
mediate depth Pamir-Hindu Kush earthguakes

[Lukk and Nersesov, 1970] clearly require more
complicated Q and/or velocity distributions in
the crust and upper mantle than are assumed here
but do not contradict a broad high-Q zone
surrounding the seismic zone.

Because in the mantle, Q for S waves is
usually lower than Q for P waves, if attenuation
strongly affects the observed spectra of the
deeper events, the ratio of S wave to P wave
spectra should decrease rapidly at high
frequencies. In Figure 11, P and S wave spectra
for several of the deeper events are shown with
their ratios. The fact that the ratio does not
decay rapidly at high frequency but instead
becomes flat supports the contention that
attenuation is not the cause of the lower
frequencies observed for the deeper events.

One other observation is consistent with a
somewhat broader zone associated with the Pamir-
Hindu Kush earthquakes than island arc earth-
Although the seismic zones at well-
studied island arcs are only 15 to 20 km wide
[Ansell and Smith, 1975; Dewey and Algermissen,
19T4; Engdahl, 1971, 1973; Mitronovas et al.,
1969; Sykes et al., 1969], they are 50 to 60 km
wide in the Hindu Kush (Figure 2) [Lukk and
Nersesov, 1970].

the earthquake [Kinyapina, 1964]. Although
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Fig. 5. The effect of attenuation on the ChISS
spectra. For different assumed values of Q the
calculated shape of the radiated spectrum

changes. Note that @ cannot be less than 1000.

From this evidence we infer that the high-Q
zone surrounding the intermediate depth events
is breoad and not confined to the immediate
vicinity of the earthquake zone (Figure 12).

We therefore conclude that the stress drops for
events between about 50 and 180 km are larger
than those deeper than 180 km. The fact that
high frequencies are well recorded from some
deeper events (h " 200 km) in the Pamirs implies
that the inference about the shape of the high-Q
zone is valid for this region. The evidence
from the Hindu Kush, however, is less convincing,
and more detailed work is likely to reveal
complexities not yet defined.

Discussion

The basic observations made in this study are
of relatively high frequencies of both P and S
waves from intermediate depth earthquakes in
the Pamir-Hindu Kush region recorded at stations
in the immediate vicinity of the earthquakes, a
few hundred kilometers to the north and several
hundred kilometers to the south (Figure 12). The
most detailed analysis is for recordings at Garm,
Tadzhikistan (about 200 km north of the seismic
zone ), where frequencies as high as 10 Hz are
well recorded. Some of the large events are even
heard there. Further north at Toktogul,
Kirgizia (about 600 km north of the seismic zone)
frequencies as high as 5 Hz are well recorded.
Seismograph stations nearly directly above the
seismic zone also record strong signals with
predominant periods of about 5 Hz [Lukk and
Nersesov, 1970]. Higher frequencies may be
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Fig. 7.

transmitted to these stations, but they are

difficult to recognize on the seismogram. To the
south, S, propagates efficiently with predominant
frequencies of 1.5 Hz to stations in India and in

Pakistan from intermediate depth events.

Again,

higher frequencies may be transmitted. Thus in
nearly all directions from the intermediate depth
events, relatively high frequencies propagate
efficiently.

Regardless of the spectrum radiated by the
earthquakes, these observations imply relatively
high Q (R1000) for these paths. Thus the
lithosphere appears to be continucus at the
seismic zone, and a zone of high @ seems to
extend into the asthenosphere at the seismic
zone. At the same time, regardless of the
average value of Q for these paths, the stress
drops of the intermediate depth earthquakes seem
to be larger than those at shallow depths.
Either Q is very high (several thousand) or the
calculated stress drops are unusually high
(several hundred bars) or both. If the calcula-
ted stress drops are less than 1 kbar, Q in the
lithosphere must be greater than about 3000.

The precise configuration of the high-Q zone
cannot be determined unambiguously. We infer
that the high-Q zone is not a narrow tongue
that penetrates the asthenosphere, for example,
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New Delhi for four intermediate or deep events
in the Pamir-Hindu Kush region.
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at island arcs, but instead is a relatively
broad zone (Figure 12). Perhaps only at depths
greater than 250 km is it a narrow tongue. At
the same time we tentatively infer that the
stress drops of events at depths between about

40 and 180 km are typically somewhat larger

than those at greater depths and perhaps 10 times
or more larger than those at shallower depths.

The high Q probably indicates lower than
usual temperatures. Several authors have
suggested that at least part of the Pamir Hindu
Kush intermediate depth earthquake zone
represents oceanic lithosphere that has
underthrust southward [Malamud, 1973; Molnar
et al., 1973; Molnar and Tapponnier, 1975;
Ulomov, 1973, 197k; Vinnik and Lukk, 1973, 197h].
If correct, since intermediate depth events do
not occur alcng the entire length of the old
Tethys Ocean that formerly lay between India
and Eurasia, the intermediate depth earthguakes
probably occur in oceanic lithosphere either
from an isolated part of the Tethys Ocean or
from an inner arc basin, perhaps that formed
much earlier than the collision between India
and Burasia. A possible explanation for the
broad zones of earthquakes and of high Q is that
much older (Paleozoic?) thicker lithosphere
recently descended into the asthenosphere than
presently does so at island arcs.

At the same time, convergence between India
and Burasia seems to be occurring by deformaticn
over a broad zone, and subduction of oceanic
lithosphere has presumably stopped in the
Pamir-Hindu Kush region. At island arcs,
although the down-going slab cools the
surrounding asthenosphere, it also drags the
surrounding asthenosphere along, maintaining a
rather narrow long cold zone. In the Pamir-
Hindu Kush region a cold slab may simply be
hanging in the asthenosphere and cooling it. By
not descending rapidly, perhaps a broader cold
region can form in the upper mantle beneath the
Pamir-Hindu Kush region than at island arcs.

Fault plane solutions of earthquakes show
that the T axis is nearly always vertical and
therefore parallel to the seismic zcne
[Soboleve, 1968a]. The earthquakes would then be
a consequence of the gravitational force acting
on the weight of the cold slab [Isacks and
Molnar, 1971]. Perhaps the larger calculated
stress drops for events between 50 and 180 km
than for deeper events results from higher
stresses in the slab, where a greater load must
be supported.

Note added in proof. ChISS (chastotno-
izbinatelnaya seismicheskaya stantsia) is
translated as frequency selection seismic station.
The output of the seismometer, proportional to
ground velocity, is band pass filtered into
several different channels. At frequencies less
than or equal to 10 Hz the bandwidths are 60% of
an octave, and the center frequencies are an
octave apart. At higher frequencies the band-
widths are 25% of an octave, and ratios of ad-
jacent center frequencies are separated by a fifth.
The ChISS specrum is a plot of the logartithm
of the maximum ground velocity recorded on the
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Fig. 9. Calculated stress drops of earthguakes

as a function of depth. Each point represents
the analysis of the spectrum of either P or S
from cne earthquake recorded at Garm. Shallow
earthquakes (h < 50 km) are not distinguished
by depth, but local earthquakes at Garm and
distant shallow earthquakes are separated. No
correction for attenuation was made.

seismogram as a function of the logarithm of the
center frequency (Figure 4). Because of the
linear dependence of the bandwidth on the center
frequency and because of the flat velocity
response, an impulsive ground motion with a flat
Fourier displacement spectrum gives a ChISS
spectrum that increases with a slope equal to 2;
that is, the peak amplitude on the seismogram is
proportional to the square of the center fre-
quency. For pulses of finite width the displace-
ment spectrum decreases at high frequencies, and
the ChISS spectrum becomes flat and often de-
creases depending upon the coherency and
duration of the signal.
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