Equity and efficiency defined and considered

You might want to study my Econ 2010 notes

Additional concepts: marginal analysis, specialization, equilibrium, and how economists judge economic systems

(the last section on judging economic systems)

Efficiency, equity and the market's ability to achieve an efficient allocation

And my Econ 4999 notes

“Efficiency is like “good” sex: more is better, except when it’s not”

People are concerned about natural and environmental resources because they feel these resources are not being correctly allocated.

That is, they think that the natural resource sector of the economy is screwed up.

Reasons usually fall into one of two categories:

The market is at fault and more government control is needed, or

The government is at fault and less government intervention is called for.

Screwed up is a nice expression, but we need to be more precise.
Economists define screwed up to mean the allocation of resources is either inefficient, inequitable or both.

(Sometimes people include not sustainable as another form of screwed up; economists typically don’t include it—an economist would say that under certain circumstances, sustainable is not efficient).

Equitable means fair. What is fair is a normative issue. There is no right or wrong answer from an economic perspective. Opinions can differ. Fair does not necessarily mean equal

Assume we all agree on who is and who is not a member of society—this is critical

According to economists, an allocation of resources is efficient if it impossible to change the allocation so as to make one or more members of society better off without making any other members worse off.

Consider the converse, if an allocation of resources is inefficient, there is the potential for a free lunch: it is possible to reallocate resources in a way that makes some better off and no one worse off. When an allocation is efficient, there is no longer this potential.

Efficiency sounds like a good thing – who wouldn’t want a free lunch?

There can be an infinite number of allocations that are efficient. Draw a utility frontier for two individuals.
Allocations are either efficient or inefficient, and most, in the real world, are inefficient.

My experience is that most, but not all, undergraduate economics majors can recite the above definition, but have only a vague notion of what it means. **Make sure you understand. My guess is that you do not understand.**

Efficiency is all about what is **possible** and what is **impossible**. Other words that help with the definition are **only if**, **must** and **requires**.

Let me use the words possible and impossible.

The current situation is inefficient (efficient) if it is possible (impossible) to change things so that some members of society would be made better off and no members would be made worse off.

Efficiency is more about what is possible than what happens.

In terms of requires and only if: The current situation is efficient only if changing things to make some members of society better off would require that other members be made worse off.

When I define efficiency (and inefficiency) I typically use the exact same words. This is a reason for this. Econ 4545 is not a creative writing class.
An important question is how one might decide whether one inefficient allocation is more efficient than another inefficient allocation.

I am not sure all economists would agree on how to do this, some might say efficiency is like pregnancy: “one is, or one is not …, and there ain’t no in-between.”

Consider two allocations of resources: allocation A with lots of steaks and flat-screen TVs and allocation B with less of that stuff but with more parks and cleaner air.

Shifting from B to A (towards more steaks and TVs) would make some individuals better off and some worse off.

Now consider how much those who would be better off would pay, in the common unit of exchange, to shift from B to A, and then consider how much the losers would be willing to pay to stop the shift.

If the gain to the gainers, in terms of the units of exchange, is greater than the loss to the losers, one might define allocation A as more efficient than allocation B.¹ We will use this as a simple definition of efficiency increasing.²

Not that changes that make some better off without making any others worse are efficiency increasing. Economists like these kinds of changes (think they are “good” and “right”).³

¹ This definition of efficiency increasing is not without its problems. For example, by this definition if one starts at B one might conclude that A is more efficient than B, but if one starts at A conclude that B is more efficient than A.

² There are some problems with this definition of efficiency increasing. For example, one can create examples where if at B going from B to A is efficiency increasing, but if at A going from A to B is efficiency increasing.
Changes that make some members of society better off and no members worse off are deemed *Pareto Improvements*

Vilfredo Pareto (1848-1923)

Note that a change that makes some better off without making any others worse off is sufficient for the change to be efficiency increasing, but it is not necessary.

Pareto, a father of welfare economics, eventually became disillusioned with economics and gave it up for sociology.
Economists typically like market transactions because they are often Pareto Improvements.

If I buy a head of organic broccoli for $6.50 at Whole Foods, according to economists, I am better off (I would not have voluntarily made myself worse off) and Whole Foods is better off (otherwise they would not have voluntarily sold it for $6.50). And, if no one else is worse off the new allocation is more efficient than the old allocation. In addition, the exchange is a Pareto Improvement. Things are not so simple if I buy, instead, cigarettes, bullets or gas: in those cases, individuals other than the exchangers might be negatively, or positively, affected.\(^5\)

An interesting question is whether trades for certain commodities should, or should not be allowed. Economists generally like market transactions when the transaction makes some people better off and no one worse off. An economist would add that a market transaction can be efficiency increasing even if it makes some members of society worse off.

However, some people feel that certain commodities should not be traded even if all parties to the trade view themselves as better off. Examples of these sorts of commodities include, depending on who you ask, sex, pollution, body parts, and selling someone the right to kill and eat you. Some people believe it is simply wrong to marketize certain types of commodities.

\(^5\) Others could also be affected by my broccoli purchase depending how the broccoli was grown and whether I eat it with my mouth open.
Some review questions: With the definition of efficiency in mind, answer the following question.

I live in the woods with Goldilocks and three bears. We don’t bother the bears and they don’t bother us. Goldilocks and I each recently inherited a bunch of trinkets. After receiving the UPS boxes of trinkets, Goldilocks and I traded our dead relatives’ trinkets until the only exchanges between the two of us that would make one of us better off would make the other worse off. These trades do not affect the bears. (Note that each of these trades was a Pareto improvement.)

However, if Goldilocks trades the bears some trinkets for honey both parties to that trade can be made better off without affecting me.

If the trade with the bears does not take place, is society’s allocation of stuff efficient? Yes or No and explain.
The answer depends on who is a member of society.

If society consists of only me the allocation is efficient before the trade between Goldilocks and the bears, and after the trade between Goldilocks and the bears (the welfares of the bears and Goldilocks are immaterial)

If society consists of only me and Goldilocks the allocation before and after Goldilocks trades is inefficient. It is efficient after Goldilocks trades with the bears.

If society consists of all of us, the allocation is only efficient after Goldilocks trades with the bears, assuming the bears were doing the best they could for themselves pre-trade with Goldilocks.

If society consists of only the bears, the allocation cannot be efficient until after they trade with goldilocks. Efficient if one assumes they are doing the best they could for themselves pre-trade.

Now consider another scenario.

I live in the woods with Goldilocks and three bears. We don’t bother the bears and they don’t bother us. Goldilocks and I each recently inherited a bunch of trinkets. After receiving the UPS boxes of trinkets, Goldilocks and I traded our dead relatives’ trinkets until the only exchanges between the two of us that would make one of us better off would make the other worse off. These trades do not affect the bears. (Note that each of these trades was a Pareto improvement.)

However, if either Goldilocks or I then give the bears some trinkets for some honey, the bears are made better off, but the person is not made better off or worse off by the exchange.

If the exchange with the bears does not take place, is society’s allocation of stuff efficient? Yes or No and explain.

What is the point of these two fairytales?
We like to think of efficiency as being a positive concept rather than a normative concept. However, as the above examples show, whether an allocation is efficient from society’s perspective is often a function of who is and who is not included in society, and Who is in and who is out is a normative issue.

6 What do we mean when we say something is a “positive concept?” Simply that all rational people would agree that the question is one of logic rather than opinion. For example, given the definition of efficiency, and agreement on who is a member of society, with enough information we would all agree on whether an allocation is or is not efficient.
Consider one more fairytale: I live in the woods with Goldilocks and three bears. Goldilocks and I each recently inherited a bunch of trinkets. After receiving the UPS boxes of trinkets, we traded our dead relatives’ trinkets until the only exchanges between the two of us that would make one better off would make the other worse off.

The bears are poor, having no honey, trinkets or stuff that Goldilocks or I might want. However, Goldilocks enjoys shooting bears. I could care less whether bears get shot, but the bears care (they are Care Bears)—they do not like being shot.

Before anyone gets shot, is the allocation efficient? It depends on who is and is not a member of society.

What is the moral of these tales?
If the “unregulated market” is causing the inefficiency, we say that the market is failing, and call what is happening a market failure.

If the market is operating efficiently but unfairly we do not call this a market failure.

In explanation, markets are not designed to be fair, so it is not a failure when the market outcome is unfair.

On what basis does the market system decide who gets the goodies?

If there is inefficiency in the system that is not caused by the market (for example, caused by the government) we do not call this inefficiency a market failure; the inefficiency is not the fault of the market.
Some of the concerns about environmental and natural resources are equity based, some are efficiency based, and some are both.

Equity based: we are not including in society everyone and everything we should (animals, plants, foreigners, future generations, etc), and/or we are not giving their preferences enough weight in social decision making.

Or maybe we are including the preferences of some group whose preferences should not count, in your opinion

Some concerns are efficiency based: market failures are quite common wrt natural and environmental resources.
Consider how one might represent graphically efficiency and inefficiency.

To limit the dimensionality of the graph, assume society has only two members: George and Smokey.

In this case, the allocation of resources is efficient if for George’s utility level, whatever it might be, Smokey’s utility level is maximized.

Graph this with George’s utility level on the horizontal axis and Smokey’s on the vertical.

The graph will be downward sloping: since resources are scarce, the greater George’s utility level, the lower is Smokey’s.

7 Increasing the utility of one does not also mean the utility of the other must decline. For example, imagine that George and Smokey are madly in love and making one happier is enough to make the other happier (the pleasure of one is pleasurable for the other) – they ascend into intertwining bliss
Any allocation of resources that results in an allocation on the downward sloping line is efficient. Denote this line the efficiency locus. Any point in the interior is inefficient. Any point to the right of the line is impossible.

Assume the initial allocation is a point A. Any reallocation of resources that moves society from A to a point on the line eliminates the inefficiency. Note that if the move is from A to someway on the line between B and C, including B and C, no one is made worse off by the reallocation. This reallocation is a Pareto improvement (at least one member of society is made better off and no member is made worse off).

If, on the other hand, the policy moves society from point A to a point such as D, the inefficiency in the allocation of resources has been eliminated but one member (George) of society is worse off.\(^8\)

\(^8\) It is important to not misinterpret. Note that Smokey was made better off and George was made worse off by the move from A to D. However, this does not mean that A, the original point, was efficient. A would have been efficient if at A the only way to make Smoky better off required that George was made worse off, and this is not the case. This was the point of your first quiz.
That is, policies that eliminate inefficiency can, and often, make some members of society worse off.