# Table of contents

**Preface**  
- P.1 -

- Section 1: To the teacher  
  - P.1 -

- Section 2: Objectives  
  - P.2 -

- Section 3: Innovations in the presentation  
  - P.3 -

- Section 4: Math  
  - P.7 -

- Section 5: Statistics  
  - P.9 -

- Section 6: Conclusion  
  - P.11 -

**Chapter 1: What is a Regression?**  
- 1.1 -

- Section 1.0: What we need to know when we finish this chapter  
  - 1.1 -

- Section 1.1: Why are we doing this?  
  - 1.4 -

- Section 1.2: Education and earnings  
  - 1.6 -

- Section 1.3: What does a regression look like?  
  - 1.8 -

- Section 1.4: Where do we begin?  
  - 1.9 -

- Section 1.5: Where’s the explanation?  
  - 1.10 -

- Section 1.6: What do we look for in this explanation?  
  - 1.12 -

- Section 1.7: How do we interpret the explanation?  
  - 1.17 -

- Section 1.8: How do we evaluate the explanation?  
  - 1.23 -

- Section 1.9: R² and the F-statistic  
  - 1.26 -

- Section 1.10: Have we put this together in a responsible way?  
  - 1.29 -
Chapter 2: The essential tool

Section 2.0: What we need to know when we finish this chapter
Section 2.1: Is this really a math course in disguise?
Section 2.2: Fun with summations
Section 2.3: Constants in summations
Section 2.4: Averages
Section 2.5: Summations of sums
Section 2.6: More fun with summations of sums
Section 2.7: Summations of products
Section 2.8: Time to reflect
Exercises

Chapter 3: Covariance and Correlation

Section 3.0: What we need to know when we finish this chapter
Section 3.1: Introduction
Section 3.2: The sample covariance
Section 3.3: Understanding the sample covariance
Section 8.2: Suppose the $\epsilon_i$s have a constant expected value that isn’t zero  
Section 8.3: Suppose the $\epsilon_i$ have different expected values  
Section 8.4: Conclusion  
Exercises  

Chapter 9: What if the disturbances have different variances?  
Section 9.0: The basics  
Section 9.1: Introduction  
Section 9.2: Suppose equation 5.6 is wrong  
Section 9.3: What’s the problem?  
Section 9.4: $\sigma_i^2$, $\epsilon_i^2$, $e_i^2$ and the White test  
Section 9.5: Fixing the standard deviations  
Section 9.6: Recovering BLU estimators  
Section 9.7: Example: Two variances for the disturbances  
Section 9.8: Maximum likelihood estimation with two variances  
Section 9.9: What if we have some other form of heteroskedasticity?  
Section 9.10: Conclusion  
Exercises  

Chapter 10: What if the disturbances are correlated?  
Section 10.0: The basics  
Section 10.1: Introduction
Section 13.6: Joint hypothesis tests
Section 13.7: Wait! What if it’s all a mistake?
Section 13.8: What happens to chapters 8, 9, 10 and 11 now?
Section 13.9: Conclusion
Exercises

Chapter 14: Express yourself
Section 14.0: The Basics
Section 14.1: Introduction
Section 14.2: Dummy variables
Section 14.3: Non-linear effects: The quadratic specification
Section 14.4: Non-linear effects: Logarithms
Section 14.5: Non-linear effects: Interactions
Section 14.6: Conclusion
Exercises

Chapter 15: More than two explanatory variables
Section 15.0: The Basics
Section 15.1: Introduction
Section 15.2: Can we have more than two?
Section 15.3: Inference in multivariate regression
Section 15.4: Let’s see some examples