The purpose of this course is to teach graduate level students to think rigorously and clearly about econometric theory and its application. This course introduces classical development of econometric technique as well as relevant statistical theory.

PREREQUISITE: 
Undergraduate level calculus and statistics.

TEXTBOOKS:

Among these textbooks, Gujarati’s book is the main one which we will follow closely. All chapters listed in the course schedule refer to Gujarati’s book. Johnston’s book has a similar context as Gujarati’s, but presents materials using a matrix notation. Those who understand matrix algebra can use this book as a reference for more advanced topics. Kennedy’s book is a descriptive introduction to basic econometrics concepts. ET is a computer software we will use for computer assignments. ET is a stripped-down version of LIMDEP. Those who are familiar with LIMDEP can use LIMDEP instead of ET.

ORGANIZATION: Two lectures per week. Two midterms and one final exam will be given. The first midterm will be given after section 5 of the course outline and the second midterm after section 8. Several problem sets and computer assignments will be given throughout the semester.

GRADING: Each exam will be counted equally. Problem sets are appropriately accounted.
TENTATIVE COURSE SCHEDULE

1. Introduction and Review of Statistics
   Chapter 1 and Appendix A.1 to A.5

2. Basic Regression Model
   Chapter 2

3. Estimation of the Basic Regression Model
   Chapters 3, 4 and Appendix A.7

4. Statistical Inference and Hypothesis Testing
   Appendix A.6 and Chapter 5

5. Extension of the Linear Regression Model
   Chapter 6

6. Multiple Regression Model - Estimation and Inference
   Chapters 7, 8

7. Dummy Variables - Estimation and Hypothesis Testing
   Chapter 14

8. Problems and Violations of the Classical Regression Model Assumptions
   A) Multicollinearity
      Chapter 10
   B) Heteroskedasticity
      Chapter 11
   C) Autocorrelation
      Chapter 12
   D) Model Specification
      Chapter 13

9. Simultaneous Equations Models
   A) Endogenous Regressors
      Chapter 17
   B) Identification Problem
      Chapter 18
   C) Estimation - ILS and 2SLS
      Chapter 19