Course Outline

Sept. 5
0. Introductions
 (2) S1.1-1.3; (3) S1.1-1.2; (5) C1; (7) S0.1-0.2.

Sept. 9, 16
I. The classical normal regression model.
The linear statistical model, assumptions; least squares
criterion and estimates; sampling distributions; Gauss-Markov
theorem; estimation and hypothesis testing under the normality
assumption.
 (2) C6-C7; (3) S2.1-2.2, 2.5-2.6, (4) C7, S10.1-10.2; (5) C7-C8;
 (7) C3.

Sept. 23-Oct. 14
II. The generalized classical normal regression model.
Aitken's theorem and the GLS estimator; some models of
heteroskedasticity; some models and estimators for
autocorrelation; disturbance related (seemingly unrelated)
regression model.
 (2) C10.14; (3) P113-119, C4; (4) S8.1; (5) S12.1-12.4; (7)
 S6.1-6.2

 (2) C15; (3) C5; (4) S8.2; (5) S12.5-12.8; (7) S6.3-6.5.

 (2) C11; (3) C6; (4) S12.3; (5) S14.4; (7) S7.1-7.4.

Oct. 24
Midterm Exam

Oct. 28-Nov. 4
III. Asymptotic distribution theory
Probability limits and limiting distributions; asymptotic
properties of some GLS estimators.
 (1) S3.1-3.5;
 (2) S9.3-9.4; (7) S8.1-8.3.

Nov. 11, 18
IV. Introduction to simultaneous equations
Formulation and the identification problem; methods of
estimation.
 (1) C4-C8;

Nov. 25-Dec. 9
V. Topics in microeconometrics
Maximum likelihood estimation; limited and discrete dependent
variables; pooling time series and cross section data;
frontier production and cost function models.
 (1) S3.6; (2) S7.1; (7) S8.4-8.6
 (2) C18; (3) C14; (6) C1-3.6; (7) S12.5.
Keener & Waldman, (1984); Lee & Waldman (1986); Amemiya,
(1981); Melfi & Waldman (1986); Waldman (1981).
 (2) C16; (3) S8.1-8.4; (4) S12.2; (5) S14.2; Mundak (1978).
 (3) S7.3; Olson, Schmidt & Waldman (1980); Schmidt (1986);
References

Texts: (For core material, sections I-IV).

Journal Articles (For topics, section V)

