Econ 4808 Introduction to Mathematical Economics
Edward Morey
Fall 2002 (August 20, 2002)

Course Description: Econ 4808 is a course that will improve your understanding of economic theory, make your other economics courses much easier and improve your basic math skills. It might even be fun. Math should be viewed as a language. Like the other languages we use in economics (e.g., English and graphical analysis), math is a way of representing and conveying information. In principles of economics courses, ideas are presented verbally and graphically. My first reaction when I took principles was that I liked the words but not the graphs. However, after a while I came to realize that graphs have their place. Graphs often make difficult concepts clear by allowing us to visualize what is going on. Words are often vague and open to misinterpretation; the English language can be quite imprecise. Graphs tend to convey information more precisely than words. A graph is worth a thousand words. Many economics majors come to love them.

Now I am asking you to learn and love a different language, math. Math allows us to understand much more complicated phenomenon than would be possible if we restricted ourselves to words and graphs. This is due to its precision and compactness. Compact means a lot of stuff (equations, variables, etc.) can be expressed with a small amount of notation. Consider, for example, algebra. The preciseness of math forces us to understand what we are doing and forces us to be logically consistent. Economic concepts and models can often be easily and precisely described in terms of mathematical notation when words and graphs would fail or mislead us. Since paper and blackboards only have two dimensions, graphs are restricted to at most three dimensions. Graphs can be very enlightening, but if the phenomenon being studied involves more than three variables, the graph provides an incomplete, and sometimes misleading, picture. In this case, mathematical functions and our ability to manipulate them become very powerful tools of economic analysis. The intent of this course is to teach you the language of mathematics and how to use it to better understand economics. The ability to describe an economic model verbally, graphically, and mathematically will make your economic life a lot easier.
The course considers the mathematics of, and economic applications of equilibrium, slopes and derivatives, differentials, optimization (maximizing and minimizing stuff like profit, cost and utility), constrained optimization (e.g., maximizing utility subject to the budget constraint), and integration. If we have time at the end, we might spend a little time on game theory. Applications include problems in consumer and producer theory, general equilibrium, welfare economics, growth and discounting, oligopoly behavior, game theory, statistics, and econometrics.

Surf the course web page. You are responsible for knowing what you will be expected of you. Know what you are getting into.

Prerequisites: Principles of Economics (Econ 2010 and Econ 2020, or Econ 1000) are prerequisites, so are Econ 1078 (Mathematical Tools for Economists 1) and Econ 1088 Mathematical Tools for Economists 2), or the equivalent. One or more semesters of Calculus would more than suffice for Econ 1078 and 1088. This course and Intermediate Micro Theory are definite compliments. It is very important that you fulfill the prerequisites before you take this course, and still understand the materials in the prerequisites. To be successful in mathematical economics, you need to first be comfortable with algebra and derivatives. If you have any uncertainty as whether you are under or over qualified to take the course, please talk to me asap.

Who needs to take this course? This course is essential for anyone considering graduate work in economics. In general, mathematics is a much more integral part of economics than most undergraduate economics majors imagine.

Web page: My web site is located at http://www.colorado.edu/Economics/morey/index.html. From it you can link to the web page for Econ 4808, or you can go directly to web page for the course at http://www.colorado.edu/Economics/morey/4808/4808home.html. Past and current assignments, review questions, and additional readings will be made available at this site on an as-need basis.

I teach a similar course, but more advanced, for M.A. students. Its web page is located at http://www.colorado.edu/Economics/morey/6808/6808home.html. Some of the readings are the same.

Class format: Lecture/problem solving/discussion

Economic theory, critical thinking and problem solving will be stressed. Class format will include both individual and group problem solving. After completing the course, you will be better able to critically evaluate economic theories.

You will spend a considerable amount of class time interactively formulating and solving
problems and building models. Small groups will often be utilized.

View the readings and my lectures as complements rather than substitutes. A lot of the basic material that you will be responsible for will be presented in lecture and is material that is not explicitly in the readings.

Details: There will be problem sets, projects and short exams. Your best (N-1) grades on these activities will constitute 40% of your course grade, the midterm 25%, and the final 35% of your course grade unless you do better on the final than on the other activities, in which case, all activities before the final will constitute 50% (30% short activities, 20% midterm) of your course grade and your final 50% of your course grade. The final will be cumulative.

Review questions: Review questions and homework problems will be handed out for each section of the course. Knowledge of these review questions will be very helpful when taking the exams. **I strongly encourage you to write out answers to these questions and discuss them with your classmates.** You will want to form study groups. Also make sure you understand and can do all the problems on the relevant old exams. Old sets of these review questions can be found on the web page.

I expect a lot.

In class I will ask many questions. I also expect you to ask questions. In addition to these questions, I will often give you the opportunity to earn, or lose, points by verbally answering specific questions. Participation in this latter activity is completely voluntary.

Group Assignments: Some of the assignments will be done in groups. I will tell you in advance if an assignment is a group endeavor. You choose your own group. The group will work together and turn in only one assignment. Everyone in the group will get the same grade for that assignment. Group activities are one of my ways of giving you an incentive to work and study together. **Note that if your group gets a grade of x on a group quiz, this does not imply that every member of the group knows the material at a x level.**

Reviewing your answers to the problem sets and short exams is an integral part of the learning process. Therefore, if you are in class when I hand back and discuss the answers, **I will add one point (out of 10) to your quiz score. Note that adding a point to your score does not, by itself, increase your math skills.**

Office Hours: My office hours will be Tuesdays 10:00 to 11:00, Thursdays from 3:15 to 4:30, and by appointment. My office is Econ 122. To make an appointment, catch me after class or contact me by email (Edward.Morey@Colorado.edu) - suggest some times. It might take me a day or two to return your email.
Correct Class Behavior:

DAYDREAMING?

NO, MA'AM, I WASN'T DAYDREAMING...

I WAS JUST CONCEPTUALIZING!
Readings

Mathematics for Economic Analysis (Knut Sydsæter and Peter Hammond). This is a third term that I have used this text. It is clear, rigorous, and modern. Remember it is a book on math for economists, not mathematical economics.

A note about *Mathematics for Economic Analysis*. This book text is designed to teach you the mathematical tools that you will need to solve economic problems. In addition it applies these tools to solve basic economic problems. The authors' intent was not to teach economic theory. To do well in this course, you will need to understand and use the mathematical tools presented in the text. In this sense, an understanding of some mathematics is necessary for you to do well in the course. However, it is not sufficient. You will also need to understand and use economic theory, and, most importantly, you will need to be able to integrate the economic theory and the math to solve economic problems. (Being a math wiz will not guarantee you a good grade) You can only achieve this integration of mathematics and economics by solving economic problems. You will have ample opportunity to do this both in and out of class. In this sense, understanding of the material in the text is necessary but not sufficient for one to do well in the course.

In the past, I did not insist that students buy the books. That was a mistake on my part.

Some intermediate micro theory text. I like *Intermediate Microeconomics* (Hal Varian). An intermediate micro book that is both elegant and rigorous. It will provide you with the theory that you need. If you still have the text from your Intermediated Micro Course, it will likely suffice.

Other readings (book chapters, journal articles, etc.) will supplement on an as-need basis. I will make them available online.

An Aside: There is lots of software out there that can do algebra and calculus. One good example is called *Mathematica*. It can differentiate, integrate, solve systems of equations and create great graphics. *Mathematica* is available on the C.U. computer system. One can also buy a student version of it at either bookstore. It is cool stuff. While *Mathematica* will play no formal role in the course, it could help you to learn and solve problems. Of course, you would never use it a substitute for learning how to take a derivative. (Even if you have it on your computer, you won’t have it available for in-class exams.) If you would like to learn more about *Mathematica*, please visit the web site for my Econ 6808 course.
Tentative Course Outline: A tentative outline for the course, along with additional readings and some lecture notes can be found at http://www.colorado.edu/Economics/morey/4808/4808read.html.

ECONOMIC OPTIMIZATION

Searching for the max

On the next pass, however, Helen failed to clear the mountains.
Mathematics and Religion:

CALVIN AND HOBBES

YOU KNOW, I DON'T THINK MATH IS A SCIENCE. I THINK IT'S A RELIGION.

Yeah, all these equations are like miracles. You take two numbers and when you add them, they magically become one. And if you multiply them, you get another one. You either believe it or you don't.

This whole book is full of things that have to be accepted on faith! It's a religion.

And in the public schools, no less. Call it a theorem. As a math atheist, I should be excommunicated from this.
Potential Dangers from Course

"Notice all the computations, theoretical scribblings and lab equipment, Norm. ... Yes, curiosity killed these cats."

"Hal Webster's blown his cerebral cortex."
1. What to look for in "proofs"

"Here's your problem—you forgot the dense factor."
How Undergraduates Can Succeed: Study Together, and in Small Classes

By ANTHONY DEPALMA

College students who study together, meet frequently with advisers and enroll in at least one small class every semester are most likely to excel, according to a report being made public today by Harvard University.

The report, which is expected to influence the way many courses are taught at other colleges and universities, also found that contrary to popular notions about college top students prefer courses that require substantial amounts of writing. They also consider foreign language courses, where classes are small and there is frequent interaction between teacher and student, close to being an academic ideal, the report found.

After five years of study the Harvard researchers concluded that the most effective strategy for an undergraduate to pursue is to make alliances with fellow students, faculty members and advisers, and not to try to brave college alone.

"The thing for a student to avoid," said Richard J. Light, a professor of education at Harvard who was director of the assessment project, "is signing up for all large classes, drifting in and out anonymously, sitting in the eighth row working quietly and then going back to the library or a dorm room and applying the seat of the pants to the seat of the chair."

A Five-Year Assessment

The report is the second of two parts of a five-year assessment of what constitutes effective teaching and learning at Harvard and by extension, at all universities. The first part of the assessment, published last year, found that students learned better and professors were more effective in courses where progress could be tracked through frequent tests, quizzes and one-minute exams at the end of a lesson. Some of its findings and recommendations have been widely copied.

"What the Harvard assessment report identified is important for learning in all kinds of settings," said Claire L. Gaudiani, president of Connecticut College, a private liberal arts college in New London, Conn. Dr. Gaudiani said that in 1980 she encouraged all faculty members at her college to examine the first report and consider following some of its suggestions, and this report prompted change. Bonnie Allsion, a professor of child development at Connecticut College, said that after reading the report she was especially impressed with the projected effectiveness of group study teams, which are common in law school settings but not in undergraduate courses.

For her "Children and Society" class, she said, she organizes the 14 students into four groups. Each group is assigned a different Supreme Court case involving children's issues. After reading the decision and determining its most important points, the students present it to the class.

"I read the case more carefully and took very clear notes because I knew I would have to give a presentation about it," said Kristina L. Putalik, a child development major from Armonk, N.Y., who studied a 1986 case on high school students' First Amendment rights. She and three other members of her group met in the college library every day, and then spent 45 minutes discussing what it meant.

In a recent case Ms. Putalik gave the background of the case and the others presented the legal implications, and it was not hard for other students to get a clear idea of what had happened.

"We don't have Mr. Chips here," she said. "If students want that, they should go somewhere else, to a small group or seminar class."

A new report at Harvard offers tips for students and professors.

A new report at Harvard on Halls and professors.

Among the institutions that studied the first report was the State University of New York at Plattsburgh. Henry G. Morlock, a professor of psychology there, said he has incorporated the one-minute exam into his introduction classes, where he said that he told students some nice little tricks, effortless and cheap, that tell me what's not getting across to the students.

Group Study Teams

This is one of the hardest things in teaching to know, especially in large classes, he said, adding, "In small classes you can see the faces, look on their faces and ask what's wrong, but you can't do that in a big lecture."

Even in small liberal arts colleges, where large classes are not usual, the report found that meeting frequently with professors and classmates was helpful. The second report made public today contains some recommendations that are simple and easy to adopt. Among them are these:

"When students are unwilling or unable to organize into study groups, professors should ask students what courses they are taking and why they are taking them. They should then set up such groups and require that readings be completed before the group meets.

In courses with several writing assignments professors should ask a few students each week to prepare their papers entirely so they can be photocopied and distributed for class discussion. Researchers found this encourages students to work harder on their papers and enhances the level of class discussion.

Students should not try to get all their required classes out of the way as soon as possible. But each professor should mix in at least one small group or seminar class.

Professors in science and mathematics should encourage cooperative learning and study groups rather than place too much importance on competitive grades, which drives interested nonsmajors from the field.

The researchers also found that students who study together, meet frequently with advisers and enroll in at least one small class every semester are most likely to excel, according to a report being made public today by Harvard University.

The report, which is expected to influence the way many courses are taught at other colleges and universities, also found that contrary to popular notions about college top students prefer courses that require substantial amounts of writing. They also consider foreign language courses, where classes are small and there is frequent interaction between teacher and student, close to being an academic ideal, the report found.

After five years of study the Harvard researchers concluded that the most effective strategy for an undergraduate to pursue is to make alliances with fellow students, faculty members and advisers, and not to try to brave college alone.

"The thing for a student to avoid," said Richard J. Light, a professor of education at Harvard who was director of the assessment project, "is signing up for all large classes, drifting in and out anonymously, sitting in the eighth row working quietly and then going back to the library or a dorm room and applying the seat of the pants to the seat of the chair."

A Five-Year Assessment

The report is the second of two parts of a five-year assessment of what constitutes effective teaching and learning at Harvard and by extension, at all universities. The first part of the assessment, published last year, found that students learned better and professors were more effective in courses where progress could be tracked through frequent tests, quizzes and one-minute exams at the end of a lesson. Some of its findings and recommendations have been widely copied.

"What the Harvard assessment report identified is important for learning in all kinds of settings," said Claire L. Gaudiani, president of Connecticut College, a private liberal arts college in New London, Conn. Dr. Gaudiani said that in 1980 she encouraged all faculty members at her college to examine the first report and consider following some of its suggestions, and this report prompted change. Bonnie Allsion, a professor of child development at Connecticut College, said that after reading the report she was especially impressed with the projected effectiveness of group study teams, which are common in law school settings but not in undergraduate courses.

For her "Children and Society" class, she said, she organizes the 14 students into four groups. Each group is assigned a different Supreme Court case involving children's issues. After reading the decision and determining its most important points, the students present it to the class.

"I read the case more carefully and took very clear notes because I knew I would have to give a presentation about it," said Kristina L. Putalik, a child development major from Armonk, N.Y., who studied a 1986 case on high school students' First Amendment rights. She and three other members of her group met in the college library every day, and then spent 45 minutes discussing what it meant.

In a recent case Ms. Putalik gave the background of the case and the others presented the legal implications, and it was not hard for other students to get a clear idea of what had happened.

"We don't have Mr. Chips here," she said. "If students want that, they should go somewhere else, to a small group or seminar class."

A new report at Harvard offers tips for students and professors.

Among the institutions that studied the first report was the State University of New York at Plattsburgh. Henry G. Morlock, a professor of psychology there, said he has incorporated the one-minute exam into his introduction classes, where he said that he told students some nice little tricks, effortless and cheap, that tell me what's not getting across to the students.

Group Study Teams

This is one of the hardest things in teaching to know, especially in large classes, he said, adding, "In small classes you can see the faces, look on their faces and ask what's wrong, but you can't do that in a big lecture."

Even in small liberal arts colleges, where large classes are not usual, the report found that meeting frequently with professors and classmates was helpful. The second report made public today contains some recommendations that are simple and easy to adopt. Among them are these:

"When students are unwilling or unable to organize into study groups, professors should ask students what courses they are taking and why they are taking them. They should then set up such groups and require that readings be completed before the group meets.

In courses with several writing assignments professors should ask a few students each week to prepare their papers entirely so they can be photocopied and distributed for class discussion. Researchers found this encourages students to work harder on their papers and enhances the level of class discussion.

Students should not try to get all their required classes out of the way as soon as possible. But each professor should mix in at least one small group or seminar class.

Professors in science and mathematics should encourage cooperative learning and study groups rather than place too much importance on competitive grades, which drives interested nonsmajors from the field.